
BACK TRACKING

We all seen poor blind people walking in roads.. If they find any obstacles in their way,
they would just move backward. Then they will proceed in other direction. A blind person
can do this by “intelligence”. similarly, if an algorithm backtracks with intelligence, it is
called Backtracking algorithm

Suppose we have to make a series of decisions, among various choices, where we
don’t have enough information to know what to choose and each decision leads to a new
set of choices. Some sequence of choices may be a solution to our problem. Backtracking
is a methodical way of trying out various sequences of decisions, until we find one that
"works".

In the following figure,
 Each non-leaf node in a tree is a parent of one or more other nodes (its children)
 Each node in the tree, other than the root, has exactly one parent

A type of data structure called “tree”,usually composed of nodes. Backtracking can be
thought of as searching a tree for a particular “goal” leaf node. Here we are not using the
tree data structure. Actually,if we diagram the sequence of choices we make, the diagram
looks like a tree, Our backtracking algorithm "sweeps out a tree" in “problem space”.



Backtracking is really quite simple -we “explore” each node, as follows:

To explore node N:
1. If N is a goal node,return “success”
2. If N is a leaf node,return “failure”
3. For each child C of N,

Explore C
If C was successful, return “success”

4. Return “failure”

 The basic idea of backtracking is to build up a vector one component at a time and to
test whether the vector being formed has any chance of success.

 The major advantage of backtracking algorithm is that if it is realized that the partial
vector generated does not lead to an optimal solution then that vector may be ignored.

 Backtracking algorithm determines the solution by systematically searching the space
for the given problem.

 Backtracking is a depth first search with some bounding function.
 All solutions using backtracking are required to satisfy a complex set of constraints.

The constraints may be explicit or implicit.
 Explicit constraints are rules, which restrict each vector element to be

chosen from the given set.
 Implicit constraints are rules,which determine which of the tuples in the

solution space,actually satisfy the criterion function.

N-QUEENS PROBLEM

N-Queens problem is to place n-queens in such a manner on an n x n chessboard that
no two queens attack each other by being in the same row,column or diagonal.
It can be seen that for n=l, the problem has a trivial solution, and no solution exists for n=2
and n=3. So first we will consider the 4-queens problem and then generalize it to n-queens
problem.

4-queens problem
Given a 4x4 chessboard and number the rows and column of the chessboard 1 through
Since we have to place 4 queens such as q1, q2, q3 and q4 on a chessboard,such that no
two queens attack each other.

In such a condition each queen must be placed on a different row, i.e., place queen “i” on
row “i”.
we place queen q1 in the very first acceptable position(1, 1). Next,we place queen q2 so that
both these queens do not attack each other. We find that if we place q2 in column 1 and 2
then the dead end is encountered. Thus the first acceptable position for q2 is column 3 ie, (2,
3)but then no position is left for placing queen q3 safely. So we backtrack one step Place
the queen q2 in (2, 4),the next best possible solution. Then we obtain the position for
placing q3 which is (3, 2), But later this position also leads to dead end and no place is



found where q4 can be placed safely. Then we have to backtrack till q1 and place it to (1, 2)
and then all the other queens are placed safely by moving q2 to（2, 4), q3 to(3, 1)and q4 to (4,
3), That is,we get the solution （ 2, 4, 1, 3). This is one possible solution for 4-queens
problem.For other possible solution the whole method is repeated for all partial solutions.
The other solution for 4-queens problem is (3, 1, 4, 2). It can be seen that all the solutions
to the 4-queens problem can b represented as 4-tuples (x1, x2, x3, x4) where “xi” represents
the column on which queen “qi” is placed.

The following figure shows the complete state space for 4-queens problem.



8-queens problem
One possible solution for 8-queens problem is shown below. The solution space of

the following solution is (4, 6, 8, 2, 7, 1, 3, 5)

N-queens problem

 If two queens are placed at positions (i, j) and (k, l) then,
they are on the same diagonal only if (i-j) = k-I or i+k = k+l.

 The first equation implies that j - l = i - k
 The second equation implies that j - l = k - I

 Therefore, two queens lie on the same diagonal if and only if |j - l |=| i - k|

Using Place() algorithm, we give a precise solution to the n-queens problem.
Place(k, i) returns a Boolean value that is true if the kth queen can be placed in column i. It
tests both whether i is distinct from all previous values x1, x2, ….., xk-1 and whether there is
no other queen on the same diagonal.




