
Dynamic Programming

Dynamic Programming is an algorithmic paradigm that solves a given complex problem by breaking
it into subproblems and stores the results of subproblems to avoid computing the same results again.
Dynamic programming is used when the sub problems are not independent. Dynamic Programming is a
bottom – up approach – we solve all possible small problems and then combine them to obtain solutions for
bigger problems.

Dynamic Programming is often used in optimization problems (A problem with many possible
solutions for which we want to find an optimal solution)
Dynamic Programming works when a problem has the following two main properties.
 Overlapping Subproblems
 Optimal Substructure

Overlapping Subproblems: When a recursive algorithm would visit the same subproblems repeatedly,
then a problem has overlapping subproblems.

Like Divide and Conquer, Dynamic Programming combines solutions to sub-problems. Dynamic
Programming is mainly used when solutions of same subproblems are needed again and again. In dynamic
programming, computed solutions to subproblems are stored in a table so that these don’t have to recomputed.
So Dynamic Programming is not useful when there are no common (overlapping) subproblems because there
is no point in storing the solutions if they are not needed again.

Optimal Substructure: A given problems has Optimal Substructure Property if optimal solution of the
given problem can be obtained by using optimal solutions of its subproblems.

The Principle of Optimality
To use dynamic programming the problem must observe the principle of optimality, that whatever the initial
state is, remaining decisions must be optimal with regard the state following from the first decision.

When developing a dynamic-programming algorithm, we follow a sequence of four steps:
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution, typically in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Chain – Matrix multiplication problem
We can multiply two matrices A and B only if they are compatible: the number of columns of A must equal the
number of rows of B. If A is a p ×q matrix and B is a q ×r matrix, the resulting matrix C is a p ×r matrix.

There are p . r total entries in C and each takes O(q) time to compute, thus the total time to multiply these two
matrices is dominated by the number of scalar multiplication, which is p . q . r.

The time to compute C is dominated by the number of scalar multiplications which is pqr. We shall express costs
of multiplying two matrices in terms of the number of scalar multiplications.

Matrix multiplication is an associative operation, but not a commutative operation. By this, we mean that we
have to follow the above matrix order for multiplication, but we are free to parenthesize the above
multiplication depending upon our need.



For example,

To illustrate the different costs incurred by different parenthesizations of a matrix product, consider the
problem of a chain <A1, A2, A3> of three matrices. Suppose that the dimensions of the matrices are 10 × 100, 100 ×
5, and 5 × 50, respectively. The possible order of multiplication are

a) If we multiply according to the parenthesization ((A1 A2)A3)

 to compute the 10 × 5 matrix product A1 A2, we perform 10 · 100 · 5 = 5000 scalar
multiplications

 to multiply this matrix product A1 A2 by matrix A3, we perform another 10 · 5 · 50 = 2500
scalar multiplications

 Hence, to compute the product ((A1 A2)A3), a total of 7500 scalar multiplications.

b) If instead we multiply according to the parenthesization (A1(A2 A3)),

 to compute the 100 × 50 matrix product A2 A3 we perform 100 · 5 · 50 = 25,000 scalar
multiplications

 to multiply this matrix product A2 A3 by matrix A1, we perform another 10 · 100 · 50 = 50,000
scalar multiplications

 Hence, to compute the product (A1(A2 A3)), a total of 75,000 scalar multiplications.

Thus, computing the product according to the first parenthesization is 10 times faster.

The matrix-chain multiplication problem can be stated as follows: Given a sequence of n matrices

A1, A2, ... An, and their dimensions p0, p1, p2, ..., pn, where where i = 1, 2, ..., n, matrix Ai has dimension
pi − 1 × pi, determine the order of multiplication that minimizes the the number of scalar multiplications.

Note that in the matrix-chain multiplication problem, we are not actually multiplying matrices. Our goal is
only to determine an order for multiplying matrices that has the lowest cost.

Step 1: The structure of an optimal parenthesization

Our first step in the dynamic-programming paradigm is to find the optimal substructure and then use it to
construct an optimal solution to the problem from optimal solutions to subproblems. For the matrix-chain
multiplication problem, we can perform this step as follows. For convenience, let us adopt the notation Ai.. j ,
where i ≤ j , for the matrix that results from evaluating the product Ai Ai+1 · · · Aj . Observe that if the problem is
nontrivial, i.e., i < j , then any parenthesization of the product Ai Ai+1 · · · Aj must split the product between Ak
and Ak+1 for some integer k in the range i ≤ k < j .

That is, for some value of k, we first compute the matrices Ai..k and Ak+1.. j and then multiply them
together to produce the final product Ai.. j . The cost of this parenthesization is thus the cost of computing the
matrix Ai..k , plus the cost of computing Ak+1.. j , plus the cost of multiplying them together.

Step 2: Recursively define the value of an optimal solution

To help us keep track of solutions to subproblems, we will use a table, and build the table in a
bottomup manner. For 1 ≤ i ≤ j ≤ n, let m[i, j] be the minimum number of scalar multiplications needed to
compute the Ai..j. The optimum cost can be described by the following recursive formulation.



To keep track of optimal subsolutions, we store the value of k in a table s[i, j]. Recall, k is the
place at which we split the product Ai..j to get an optimal parenthesization.

That is, s[i, j] = k such that m[i, j] = m[i, k] + m[k + 1, j] + pi − 1 . pk . pj.

Step 3: Computing the value of an optimal costs

we perform the third step of the dynamic-programming paradigm and compute the optimal cost by using a
tabular, bottom-up approach. The following pseudo-code assumes that matrix Ai has dimensions pi−1 × pi for i =
1, 2, . . . , n. The input is a sequence p = p0, p1, . . . , pn, where length[p] = n + 1. The procedure uses an auxiliary
table m[1 . . n, 1 . . n] for storing the m[i, j ] costs and an auxiliary table s[1 . . n, 1 . . n] that records which index
of k achieved the optimal cost in computing m[i, j ]. We will use the table s to construct an optimal solution.

Time Complexity of matrix chain multiplication is : O(n^3)

Step 4: Constructing an optimal solution

The array s[i, j] can be used to extract the actual sequence. The basic idea is to keep a split marker
in s[i, j] that indicates what is the best split. The initial call PRINT-OPTIMAL-PARENS(s, 1, n) prints an optimal
parenthesization of A1, A2, . . . , An

Example problem:






