Introduction to Complexity Theory

The field of complexity theory deals with how fast can one solve a certain type of problem. Or more generally how much resource does it take: time, memory-space, number of processors etc. The most common resource is time: number of steps. This is generally computed in terms of n , the length of the input string. We will use an informal model of a computer and an algorithm. All the definitions can be made precise by using a model of a computer such as a Turing Machine

CLASSES OF PROBLEMS

We can categorize the problems into the following broad classes

1. Problems which cannot even be defined formally.
2. Problems which can be formally defined but cannot be solved by computational means.
3. problems which, though theoretically can be solved by computational means, yet are infeasible ie., these problems require so-large amount of computational resources that practically is not feasible to solve these problems by computational means.
These problems are called Intractable or infeasible problems
4. Problems that are called feasible or theoretically not difficult to solve by computational means. The distinguishing feature of the problems is that for each instance of any of these problems, there exists a Deterministic Turing Machine that solved the problem having time-complexity as a polynomial function of the size of the problem. The class of problem is denoted by P
5. Last class Includes large number of problems for each of which it is not known whether It is In P or not in P .

Decision Problems

6.

Decision problems are the computational problems for which the intended ouput is either "yes" or "no". In other words, a decision problem is a problem with yes / no answers. Hence in a decision problem, we can equivalently talk of the language associated with the decision problem, namely, the set of inputs for which the answer is yes.

Typically, we assume that the input is coded in binary, so the set of all possible inputs is $\{0,1\}^{*}$ and the language associated with a decision problem Q is
$\mathrm{L}(\mathrm{Q})=\left\{\mathrm{x} €\{0,1\}^{*} \mid\right.$ the answer is yes for problem Q on input x$\}$

The classes P and NP:
The class P consists q those problems that are solvable in polynomial time. More specifically, they are problems that can be solved in time $O\left(n^{k N}\right)$ for some constant k, where n is the size q the input to the problem. Most of the problems examined in previous modules are in P.

The class NP consists of those problems that are 'verifiable' in polynomial time. If we were somehow given a 'certificate' of a solution, then we could verify that the certificale is correct in time polynomial in the size of the input to the problem.

Example:
PATH
INPUT: graph G, nodes a and b
Question: Is there a path from a to b in G ?
This problem is in P. To see if there is a path from node a to node b, one might determine all the nodes reachable from a by doing for instance a breadth-firgt search or Dijkstra's algorithm.

Verification Algorithm:
A verification algorithm is an algorithm A, that takes two inputs: an ordinary input x, and a certificate y, and outputs a 1 on certain combinations of x and y.
verification algorithm A verifies an input string x if there exists a cerrificale y such that

$$
A(x, y)=1 .
$$

The language verified by verification algorithm A is
$L=\{$ input string $x \mid$ there exists certificate string 9 such that $A(x, y)=1\}$

Example:
In the hamiltonian cycle problem, given a directed graph $G=(V, E)$, a certificate would be sequence $\left\langle V_{1}, V_{2}, V_{3} \ldots V_{i v}\right\rangle$ of vertices. We woald easily check in polynomial time that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1,2,3 \ldots|v|-1$ and that $\left(v_{|v|}, v_{1}\right) \in E$ as well.
Polynomial - time Verification Algorithm:
A verification algorithm. A for a language L is a polynomial -time verification algorithm for L if

- for each $x \in L$, there is a certificate y of size polynomial in the size $o x$ such that $A(x, y)=1$, and $A(x, y)$ returns 1 in time Polynomial in x.
- Since A is a verification algorithm for L, for every x not in L there is no certificate y for which $A(x, y)=1$.
$P, N P$ and NP -complete:
Any problem in $(P$ is also in $N P$, since if a problem is in P then we can solve it in polynomial time without even being supplied a certificate. so we can believe that $P \subseteq N P$. The open question is whether or not P is a proper subset of NP.

Informally, a problem is in the class NPC and we refer to it as being $N P$-complete - it it is in NP and is as "hard" as any problem in NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomil time algorithm.

Reduction:
Let L_{1} and L_{2} be two decision problems. Suppose algorithms A_{2} solves L_{2}. That is, if y is an input for L_{2} then algorithm A_{2} will answer Yes or No depen. ding upon whether $y \in L_{2}$ or not.

The idea is to find a transformation f from L_{1} to h_{2} so that the algorithm A_{2} car $b \in$ part of an algorithm A_{1} to solve L_{1}.

Algorithm for L_{1}

Polynomial - time Reduction:
Let L_{1} and L_{2} be languages that are subsets of $\{0,1\}^{*}$. We say that L_{1} is polynomial -time reducible to L_{2} if the ex exists a function f

$$
f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}
$$

with the following properties.

- f transforms an input x for L_{1} imho ans input $f(x)$ for L_{2} such that $f(x)$ is a yes - input for L_{2} if and only if x is a yes input for L_{1}. We require a yes - input of L_{1} maps to a ges-input of L_{2}, and a no-input of L_{1} maps to a no-inpat of L_{2}.

$f(x)$ is computable in polynomial time. If such on f exists, we say that L_{1} is Polynomial-time reducible to L_{2}, and write $\frac{L_{1} \leqslant p L_{2}}{\left.L_{1} \leqslant t_{2}\right)}$
Languages in NP:
Let us consider the following examples of decision problems.
- HAM -CYCLE $=\{\langle G\rangle \mid G$ is a Hamiltonian graph $\}$
- CIRCUIT-SAT $=\{\langle c\rangle \mid c$'s a satisfiable boolean $c k t\}$
- SAT $=\{\langle\phi\rangle \mid \phi$ is satisfiable boolean formula $\}$
- CNF-SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable boolean formula in CNF \}
- $3-C N F-S A T=\{\langle\phi\rangle \mid \phi$ is a satisfiable boolean formula in CNF \}
- CLIQUE $=\{\langle G, K\rangle \mid G$ is an cindirected graph with a clique of size $k\}$
IS $=\{\langle G, k\rangle \mid G$ is an undirected graph with an independent set of size $k\}$
VERTEX-COVER $=\{\langle G, K\rangle$ |undirected graph G has a vertex cover q size $k\}$
- $T S P=\{\langle G, c, k\rangle \mid G=(V, E)$ is a complete graph. $C: V \times V \rightarrow z$ is a cost function, $k \in Z$ and G has a traveling salesman tour with cost at most $k\}$
- SUBSET-SUM $=\left\{\langle S, t\rangle \mid\right.$ there is a subset $S^{\prime} \subseteq S$ such that $\left.t=\sum_{s \in S^{\prime}} s\right\}$

IS $P=N P$?
One g the most important problems in conster science is whether $P=N P$ or $P \neq N P$? Observe that $P \subseteq N P$. Given a problem $A \in P$, and a certificate, to verify the validity of a cjes -input (an instance of A), we can simply solve A in polynomial time (since $A \in P$). It implies $A \in N P$.

Intuitively, $N P \subseteq P$ is docibifal. After all, just able to verify a certificate in polynomial time does not necessary mean we can able to tell whether an input is an yes-input of no-input in polynomial time.

However, 30 years aflet the $P=N P$? problem was first proposed, we are still no closer to solving it and do not know the answer. The search for a solution, though, has provided us with deep insights in to what distinguishes an 'easy' problem from a 'hard' one.

The class co-NP:
$L \frac{E N P}{L \in N P}$
Note that if $L \in N P$, there is no guarantee that $\bar{L} \in N P$ (since having certificates for yes-inpuls, does not mean that we have certificaless for the no - inputs).

The class of decision problems L such that $L \in N P$ is called co-NP.

$$
\text { prime } \frac{\text { Composite }}{\text { Pr }} 2,3,5,7
$$

Example: cOMPOSITE $\in N P$ So PRIME $=\overline{\text { COMPOSITE }} \in$ CO-NP
The complexity class. NP is the class of langages that can be verified by a polynomial - time algorithm. More precisely, a language L belongs to NP if and only if there exist a two -input polyno-mial-time algorithm ' 4 ' and a constant ' c ' suck that
$L=\left\{x \in\{0,1\}^{*}\right.$: there exist a certificate y with

$$
|y|=O\left(|x|^{c}\right)
$$

such that $A(x, y)=1\}$.
We say that algorithm A verifies language L in polynomial time.

We can define the complexily class CO -NP as the set of languages L such that $L \in N P$. Once again, no one knows whether $P=N P \cap C O-N P$ or whether there is some language in NP D CO-NP-S

Possibilities for relationships among complexity dar

(a)

(c)

$$
N P=C O-N P
$$

$$
P
$$

(b)

(d)

In each diagram, one region enclosing another indicates a proper -subset relation.
(a) $P=N P=$ Co -NP. Most researchers regard this possibility as the most unlikely.
(b) If $N P$ is closed under complement, then $N P=C O-N P$, but it need not be the case that $P=N P$.
(c) $P=N P \cap$ co -NP, but NP is not closed under complevent.
(d) $N P \neq C O-N P$ and $P \neq N P \cap C O-N P$. Most researchers regard this possibility as the most likely.
NP -Hard:
A language $L \subseteq\{0,1\}^{*}$ is $N P$-complete if

1. $L \in N P$, and
2. $L^{\prime} \leq P L$ for every $L^{\prime} \in N P$

If a language L satisfies properly 2 , but not necessarily property 1 , we say that L is NP-Hard.

NP-hardness is a class of problems that are, informally, "at least as hard as the hardest problems in NP". More precisely, a problem H is NP -Hard when every problem L in NP can be reduced in polynomial time to H.

Theorem:
If any NP-complete problem is polynomial time solvable, then $P=N P$. If any problem in NP is not polynomial time solvable, then all $N P$-complete problems are not polynomial time solvable.

Proof:
Suppose that $L \in P$ and also that $L \in N P C$. For any $L^{\prime} \in N P$, we have $L^{\prime} \leqslant L^{L}$ by properly 2 of the definition of NP -completeness.

A language $L \subseteq\{0,1\}^{*}$ is NP complete if it

- Satisfies the following two properties:

1. LENP; and
2. For every $L^{\prime} \in N P, L^{\prime} \leqslant p L$

We use the notation $L \in N P C$ to denote that L is $N P$-complete.

We know if $L^{\prime} \leqslant p L$ then $L \in P$ implies $L^{\prime} \in P$, which Proves the first statement.

To proves the second statement, suppose that there exists an $L \in N P$ such that $L \& P$. Let $L^{\prime} \in N P C$ be any NP-complete language, and for the purpose of contradiction, assume that $L^{\prime} \in P$. But then we have $L_{p} \leq L^{L^{\prime}}$ and thus $L \in P$.

- Proving NP-completeness:

To prove that a problem P is NP -complete, we have following methods:
Method 1: (direct proof)
(a) P is in NP
(b) All problems in NP-complete can be reduced to P.

Method 2: (equivally general but potentially easier)
(a) P is in NP
(b) Find a problem p 'that has already been proven to be in $N P$ - complete
(c) Show that $P^{\prime} \leq P$.

NP-Complete problems
Examples of NP-complete problems
(1) Formula satisfiabilily
(8.) Traveling Salesman
(2) Circuit satisfiability
(3) 3-CNF satisfiabilily
(4) clique
(5) vertex cover
(6). Subset-sum
(7). Hamiltonian cycle

Clique:
A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \leq V$ of vertices, each pair q which is connected by an edge in E. In other words, a clique is a complete subgraph of G. The size o a clique is the number q vertices it contains. The clique problem is the optimization problem of finding a clique of maximum size in a graph.

As a decision problem, we ask simply whether a clique of a given size k exists in the graph.
The formal definition is
$C L I Q U E=\{\langle G, K\rangle: G$ is a graph containing a clique, E) of size $k\}$

Theorem

The clique problem is NP-complete.
proof
To show that CLIQUE ENP, for a given graph $G=(V, E)$, we use the set $V^{\prime} \subseteq V$ of vertices in the clique as a certificate for G. We can check whether V 'is a clique in polynomial time by checking whether, for each pair $u, v \in v^{\prime}$, the edge (u, v) belongs to E.

Example:
fig (a)

$$
\begin{aligned}
& V^{\prime}=\{A, B, D, E, C, A\} \rightarrow C L I Q U E \\
& V^{\prime}=\{A, B, G, D, F, G\} \times
\end{aligned}
$$

Next prove that $3-C N F-S A T \leqslant$ CLIQUE, which shows that the clique problem is NP-hard.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let $\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}$ be a boolean formula in $3-C N F$ with K clauses. For $r=1,2 \ldots k$, each clause C_{r} has exactly three distinct literals l_{1}^{r}, l_{2}^{r}, and l_{3}^{r}. We shall construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.

We consaract the graph $G=(V, E)$ as follows. For each clause $C_{r}=\left(l_{1}^{r} \vee l_{2}^{r} \vee l_{3}^{r}\right)$ in ϕ, we place a triple of vertices v_{1}^{r}, v_{2}^{r}, and v_{3}^{r} into v_{0}. We pat an edge between two vertices v_{i}^{r} and v_{j}^{s} if both q the following hold:
$\rightarrow V_{i}^{r}$ and v_{j}^{s} are in different triples, that is, $r \neq s$, and
\rightarrow their corresponding literals are consistent, that is, l_{i}^{r} is not the negation $q l_{j}^{s}$.

We can easily build this graph from ϕ in polynomial. time. As an example of this construction,
if we have

$$
\phi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \neg
$$

then G is the graph shown in $f(b)$ (b).
$C_{1}=x_{1} \vee \neg x_{2} \vee \neg x_{3}=1 \quad l$
$x_{1}=0 / 1$
$x_{2}=0$
$x_{3}=1$

Fig (b): The graph G derived from the $3-C N F$ formula $\phi=c_{1} \wedge c_{2} \wedge c_{3}$, where $c_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$ $c_{2}=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$, and $c_{3}=\left(x_{1} \vee x_{2} \vee x_{3}\right)$, in reducing $3-C N F-S A T$ to CLIQUE.
A satisfying assignment of the formula has $x_{2}=0, x_{3}=1$, and x_{1} either 0 or 1 . This assignment satisfies C_{1} with $7 x_{2}$, and it Satisfies c_{2} and c_{3} with x_{3}, corresponding to the clique with lightly shaded vertices.
we must show that this transformation of ϕ into G is a reduction. First, suppose that ϕ has a satisfying assignment. Then each clause C_{r} contains at least one literal l_{i}^{r} that is assigned 1 , and
each such literal corresponds to a vertex v_{i}^{r}. Picking one such 'true' literal from each clause yields a set V^{\prime} of k vertices. We claim that V^{\prime} is a clique. For any two vertices $V_{i}^{r}, V_{j}^{5} \in V^{\prime}$, where $r \neq s$, both correspoDding literals l_{i}^{r} and l_{j}^{s} map to 1 by the given satisfying assignment, and thus the literals cannot be complements. Thus, by the construction $\mathcal{G} G$, the edge $\left(\nu_{i}^{r}, v_{j}^{s}\right)$ belongs to E.

Conversely, suppose that G has a clique V^{\prime} of size K. No edges in G connect vertices in the same triple, and so V^{\prime} contains exactly one vertex per triple. We can assign 1 to each literal l_{i}^{r} such that $v_{i}^{r} \in V^{\prime}$ without fear of assigning 1 to both a literal and its complement, since G contains no edges between inconsistent literals. Each clause is satisfied, and so ϕ is satisfied.

