
GREEDY ALGORITHMS
Greedy algorithms solve problems by making the choice that seems best at the particular moment.

Many optimization problems can be solved using a greedy algorithm. Some problems have no efficient
solution, but a greedy algorithm may provide a solution that is close to optimal.

A greedy algorithm works if a problem exhibits the following two properties:

1. Greedy choice property: A globally optimal solution can be arrived at by making a locally
optimal solution. In other words, an optimal solution can be obtained by making "greedy" choices.

2. optimal substructure. Optimal solutions contain optimal sub solutions. In other Words,
solutions to sub problems of an optimal solution are optimal.

Difference Between Greedy and Dynamic Programming

 The most difference between greedy algorithms and dynamic programming is that we don’t
solve every optimal sub-problem with greedy algorithms. In some cases, greedy algorithms can
be used to produce sub-optimal solutions. That is, solutions which aren't necessarily optimal,
but are perhaps very dose.

 In dynamic programming, we make a choice at each step, but the choice may depend on the
solutions to subproblems.

 In a greedy algorithm, we make whatever choice seems best at 'the moment and then solve the
sub-problems arising after the choice is made. The choice made by a greedy algorithm may
depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-
problems.

 Thus, unlike dynamic programming, which solves the sub-problems bottom up, a greedy
strategy usually progresses in a top-down fashion, making one greedy choice after another,
interactively reducing each given problem instance to a smaller one.



The 0-1 knapsack problem is posed as follows.
A thief robbing a store finds n items; the ith item is worth vi dollars and weighs wi pounds, where vi

and wi are integers. He wants to take as valuable a load as possible, but he can carry at most W pounds in
his knapsack for some integer W. This is called the 0-1 knapsack problem because each item must either
be taken or left behind; the thief cannot take a fractional amount of an item or take an item more than
once.

In the fractional knapsack problem,
the setup is the same, but the thief can take fractions of items, rather than having to make a binary

(0-1) choice for each item. Fractional knapsack problem can be solvable by the greedy strategy whereas
the 0-1 knapsack problem is not.
To solve the fractional problem:

 Compute the value per pound vi / wi for each item
 Obeying a greedy strategy, we take as much as possible of the item with the greatest value

per pound.
 If the supply of that item is exhausted and we can still carry more, we take as much as

possible of the item with the next value per pound, and so forth until we cannot tarn any
more.

 Sorting the items by value per pound, the greedy algorithm runs in 0(n lgn) time .

0-1 knapsack problem cannot be solved by the greedy strategy because
 it is unable to fill the knapsack to capacity, and the empty space lowers the effective

value per pound of the load
 we must compare the solution to the sub-problem in which

 the item is included with the solution to the sub-problem
 the item is excluded

before we can make the choice.

Example:




