MODULE – IV
Polygon clipping-Sutherland Hodgeman algorithm, Weiler- Atherton algorithm, Three dimensional object representation- Polygon surfaces, Quadric surfaces – Basic 3D transformations

POLYGON CLIPPING
To clip polygons, we need to modify the line-clipping procedures. A polygon boundary processed with a line clipper may be displayed as a series of unconnected line segments, depending on the orientation of the polygon to the clipping window.

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
Convex polygons are correctly clipped by the Sutherland-Hodgeman algorithm, but concave polygons may be displayed with extraneous lines. This occurs when the clipped polygon should have two or more separate sections. But since there is only one output vertex list, the last vertex in the list is always joined to the first vertex

 [image:]

Weiler- Atherton Polygon Clipping
This clipping procedure was developed as a method for identifying visible surfaces, and so it can be applied with arbitrary polygon-clipping regions.
The basic idea in this algorithm is that instead of always proceeding around the polygon edges as vertices are processed, we sometimes want to follow the window boundaries. Which path we follow depends on the polygon-processing direction (clockwise or counter clockwise) and whether the pair of polygon vertices currently being processed represents an outside-to-inside pair or an inside- to-outside pair. For clockwise processing of polygon vertices, we use the following rules:
For an outside-to-inside pair of vertices, follow the polygon boundary.
For an inside-to-outside pair of vertices,. follow the window boundary in a clockwise direction.

In the below Fig. the processing direction in the Weiler-Atherton algorithm and the resulting clipped polygon is shown for a rectangular clipping window.
[image:]
Curve Clipping

Curve-clipping procedures will involve nonlinear equations, and this requires more processing than for objects with linear boundaries. The bounding rectangle for a circle or other curved object can be used first to test for overlap with a rectangular clip window. If the bounding rectangle for the object is completely inside the window, we save the object. If the rectangle is determined to be completely outside the window, we discard the object. In either case, there is no further computation necessary. But if the bounding rectangle test fails, we can look for other computation-saving approaches. For a circle, we can use the coordinate extents of individual quadrants and then octants for preliminary testing before calculating curve-window intersections.

The below figure illustrates circle clipping against a rectangular window. On the first pass, we can clip the bounding rectangle of the object against the bounding rectangle of the clip region. If the two regions overlap, we will need to solve the simultaneous line-curve equations to obtain the clipping intersection points.
[image:]
[image:]
[image:]

Three-Dimensional Object Representations

Representation schemes for solid objects are divided into two categories as follows:

1. Boundary Representation (B-reps)

It describes a three dimensional object as a set of surfaces that separate the object interior from the environment. Examples are polygon facets and spline patches.

2. Space Partitioning representation

It describes the interior properties, by partitioning the spatial region containing an object into a set of small, nonoverlapping, contiguous solids(usually cubes).
Eg: Octree Representation

Polygon Surfaces

Polygon surfaces are boundary representations for a 3D graphics object is a set of polygons that enclose the object interior.

Polygon Tables
The polygon surface is specified with a set of vertex coordinates and associated attribute parameters. For each polygon input, the data are placed into tables that are to be used in the subsequent processing. Polygon data tables can be organized into two groups: Geometric tables and attribute tables.

Geometric Tables Contain vertex coordinates and parameters to identify the spatial orientation of the polygon surfaces.
Attribute tables Contain attribute information for an object such as parameters specifying the degree of transparency of the object and its surface reflectivity and texture characteristics.

A convenient organization for storing geometric data is to create three lists:
1. The Vertex Table Coordinate values for each vertex in the object are stored in this table.
2. The Edge Table It contains pointers back into the vertex table to identify the vertices for each polygon edge.
3. The Polygon Table It contains pointers back into the edge table to identify the edges for each polygon. This is shown in fig
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

[image:]
[image:]

Three Dimensional Transformations
Geometric transformations in three dimensions are extended from two-dimensional methods by including considerations for the z-coordinate.
[image:]
[image:]
ROTATION

To generate a rotation transformation for an object, we must designate an axis of
rotation (about which the object is to be rotated) and the amount of angular rotation.
Unlike two-dimensional applications, where all transformations are carried
out in the xy plane, a three-dimensional rotation can be specified around any line
in space.
Coordinate-Axes Rotations

The two-dimensional z-axis rotation equations are easily extended to three dimensions:
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
SCALING

The matrix expression tor the scaling transformation of a position P = (x, y, z) relative
to the coordinate origin can be written as
[image:]

General Three-Dimensional Rotations
A rotation matrix for any axis that does not coincide with a coordinate axis can be set up as a composite transformation involving combinations of translations and the coordinate-axes rotations.

An object is to be rotated about an axis that is parallel to one of the coordinate axes,

We can attain the desired rotation with the following transformation sequence.
1. Translate the object so that the rotation axis coincides with the parallel coordinate axis.
2. Perform the specified rotation about that axis.
3. Translate the object so that the rotation axis is moved back to its original position.
[image:]
[image:]
An object is to be rotated about an axis that is not parallel to one of the coordinate axes
In this case, we also need rotations lo align the axis with a selected coordinate axis and to bring the axis hack to its original orientation. Given the specification s for the rotation axis and the rotation angle, we can accomplish the required rotation in five steps shown in fig 11.9

1 Translate the object so that the rotation axis passes through the coordinate origin.
2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.
3. Perform the specified rotation about that coordinate axis.
4. Apply inverse rotations to bring the rotation axis back to its original orientation.
5. Apply the inverse translation to bring the rotation axis back to its original position.

[image:]

A rotation axis can be defined with two coordinate positions, as in Fig. 11-10. We will assume that the direction of rotation is to be counter clockwise when looking along the axis from P2 to P1.

[image:]

An axis vector is then defined by the two points as
[image:]
Where the components a, b, and c of unit vector u are the direction cosines for the rotation axis:
[image:]
The first step in the transformation sequence for the desired rotation is
 Set up the translation matrix that repositions the rotation axis so that it passes through the coordinate origin. we accomplish this by moving point PI to the origin. This translation matrix which repositions the rotation axis and the object, as shown in Fig. 11-11 is
[image:] [image:]

Now we need the transformations that will put the rotation axis on the z axis. We can use the coordinate-axis rotations to accomplish this alignment in two steps.
1. We will first rotate about the x axis to transform vector u into the xz plane.
2. Then we swing u around to the z axis using a y-axis rotation.
These two rotations are illustrated in Fig. 11-12 for one possible orientation of vector u.
[image:]
Since rotation calculations involve sine and cosine functions, the standard vector operations can be used to obtain elements of the two rotation matrices. Dot-product operations allow us to determine the cosine terms, and vector cross products provide a means for obtaining the sine terms.
[image:]
[image:]
[image:]
[image:]
We establish the transformation matrix for rotation around the x axis by determining the values for the sine and cosine of the rotation angle necessary to get u into the xz plane. This rotation angle is the angle between the projection of u in the yz plane and the positive z axis.
[image:]
If we designate the projection of u in the yz plane as the vector u' = (0, b, c), then the cosine of the rotation angle α can be determined from the dot product of u' and the unit vector uz, along the z axis:
[image:]
[image:]
This matrix rotates unit vector u about the x axis into the xz plane.
Next, determine the transformation matrix that will swing the unit vector in the xz plane counterclockwise around the y axis onto the positive z axis.
[image:]
Here, the vector, labeled u" is orientation of the unit vector in the xz plane (after rotation about the x axis) . This vector, labeled u", has the value a for its x component, since rotation about the x axis leaves the x component unchanged. Its z component is d (the magnitude of u'), because vector u' has been rotated onto the z axis. And the y component of u" is 0, because it now lies in the xz plane.
Again, we can determine the cosine of rotation angle β from expressions for the dot product of unit vectors u" and u,:
[image:]
With transformation matrices 11-17, 11 -23, and 11-28, we have aligned the rotation axis with the positive z axis.
The specifled rotation angle Ɵ can now be applied as a rotation about the z axis:
[image:]
To complete the required rotation about! the given axis, we need to transform the rotation axis back to its original position. This is done by applying the inverse of transformations 11-17, 11-23, and 11-28.
The transformation matrix for rotation about an arbitrary axis then can be expressed as the composition of these seven individual transformations:
[image:]
image4.emf

image52.png

image53.png

image54.png
N
Ny,

image55.png

image56.png

image5.emf

image57.png

image58.png

image59.png

image60.png

image61.png

image62.emf

image6.emf

image63.emf

image64.emf

image65.emf

image66.png

image67.png

image68.png

image7.emf

image69.png

image70.png

image71.png

image72.png

image73.png

image8.emf

image74.png

image75.png

image76.png

image77.png

image78.png

image9.emf

image79.png

image80.png
eSS

image81.png

image82.png

image83.png

image84.png

image85.png

image86.png

image87.png

image88.png

image10.png

image89.png

image90.png

image91.png

image92.png
(1 ‘m\)

image93.png

image94.png

image95.png

image96.emf

image97.emf

image98.emf

image99.emf

image100.emf

image101.png

image11.png

image102.emf

image103.emf

image104.png

image105.png

image106.png

image107.emf

image108.emf

image109.emf

image110.emf

image111.emf

image112.emf

image113.emf

image114.emf

image115.emf

image116.emf

image117.emf

image118.emf

image12.png

image119.emf

image120.emf

image121.emf

image122.emf

image123.emf

image124.emf

image125.emf

image126.emf

image127.emf

image128.emf

image129.emf

image130.emf

image131.emf

image132.png
11-17)

image133.emf

image134.png
s

(a) b}

Figure 11-12
Unit vector u is rotated about the x axis to bring it
into the 1z plane (a), then it is rotated around the y
axis to align it with the z axis (b).

image135.png
Scalar Product of Two Vectors

Vector multiplication for producing a scalar is defined as

V-V, = vl |V,lcos6, 0sc8s=n

image136.png
Vi- Vo=V, Vo + Vi Vy + V,Vy,

image137.png
Vector Product of Two Vectors

Multiplication of two vectors to produce another vector is defined as

V,xV,=ulv,| |V,Isina, 0=6=<n

image138.png
Vi X Vo= (V Vo, = VoV, Vi Vi — ViV ViV = ViV

image13.png

image139.png
Figure 11-13

Rotation of u around the x
axis into the xz plane is
accomplished by rotating u’
{the projection of u in the vz
plane) through angle « onto
the z axis.

image140.png
cos a ¢
r = - e
lulfud d 1
where 4 is the magnitude of u’:
d=Vb+? i

Similarly, we can determine the sine of a from the cross product of u’ and u,. The
coordinate-independent form of this cross product is

. .., 1 . N .
u XuA=u,$u‘|u:|smu]2
and the Cartesian form for the cross product gives us
uXu =u-b

Equating the right sides of Eqs. 11-20 and 11-21, and noting that |u,| = 1 and
[u'] = d, wehave

dsina

image141.png
sina =

(11-2)

ol

Now that we have determined the values for cose and sine in terms of the com-
ponents of vector u, we can set up the matrix for rotation of u about the x axis:

1 0 o0 o0
0 c/d - b/d 0 (1-23)
0 b/d c/d 0
000 0 1

R(a) =

image142.png
Figure 11-14
Rotation of unit vector u”
{vector u after totation into
the xz plane) about the y axis.
Positive rotation angle 8
aligns u” with vector u..

image143.png
”

u’-u,

cosf=———7 =d 124
Ju] [u,|
since u,| = {u”| = 1. Comparing the coordinate-independent form of the cross
product
u"xuz=uy|u”‘ ‘uz\smB =25
with the Cartesian form
u’ Xu, =u, - (-2 (11-20)
we find that
sinf = ~a 27

Thus, the transformation matrix for rotation of u” about the y axis is

d 0 —a 0
01 00

RMB=1 0 4 o (2%
00 0 1

image144.png
cosf —sing
sinf cosé
0 0
0 0

R.(8) = {11-29)

o~ o o
- o o o

image145.png
R(6) =T R, (@ R, B R(O) - R(P) Ry T

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.emf

image1.emf

image37.png

image38.png

image39.png

image40.png

image41.png

image2.emf

image42.png

image43.png

image44.png

image45.png

image46.png

image3.emf

image47.png

image48.png

image49.png

image50.png

image51.png

MODULE

–

IV

Polygon clipping

-

Sutherland Hodgeman algorithm, Weiler

-

Atherton algorithm, Three

dimensional object representation

-

Polygon surfaces, Quadric surfaces

–

Basic 3D

transformations

POLYGON CLIPPING

To clip polygons, we need to modify the line

-

clipping proc

edures. A polygon boundary

processed with a line clipper may be displayed as a series of unconnected line segments,

depending on the orientation of the polygon to the clipping window.

MODULE – IV Polygon clipping - Sutherland Hodgeman algorithm, Weiler - Atherton algorithm, Three dimensional object representation - Polygon surfaces, Quadric surfaces – Basic 3D transformations POLYGON CLIPPING To clip polygons, we need to modify the line - clipping proc edures. A polygon boundary processed with a line clipper may be displayed as a series of unconnected line segments, depending on the orientation of the polygon to the clipping window.

