
KTU - CST202 - Computer Organization and Architecture Module: 1

1

Module: 1

BASIC STRUCTURE OF COMPUTERS - Functional units – Basic operational

concepts – Bus structures. Memory locations and addresses – memory

operations – instructions and instruction sequencing – addressing modes.

Basic processing unit -Fundamental concepts –instruction cycle -

execution of a complete instruction –single bus and multiple bus

organization.

WHY COMPUTER ORGANIZATION AND ARCHITECTURE?

Computer architecture is a key component of computer engineering and it is concerned

with all aspects of the design and organization of the central processing unit and the integration

of the CPU into the computer system itself.

Architecture extends upward into computer software because a processor’s architecture

must cooperate with the operating system and system software. It is difficult to design an

operating system well without knowledge of the underlying architecture.

Moreover, the computer designer must have an understanding of software in order to

implement the optimum architecture.

INTRODUCTION

Computer: A device that accepts input, processes data, stores data, and produces output, all

according to a series of stored instructions.

Software: A computer program that tells the computer how to perform particular tasks.

Hardware: Includes the electronic and mechanical devices that process the data; refers to the

computer as well as peripheral devices.

Peripheral devices: Used to expand the computer’s input, output and storage capabilities.

Network: Two or more computers and other devices that are connected, for the purpose of

sharing data and programs.

Computer Types:Computers are classified based on the parameters likeSpeed of operation, Cost,

Computational power and Type of application

Difference between computer organization and computer architecture

 Architecture describes what the computer does and organization describes how it does it.

Computer organization:

 Computer organization is concerned with the way the hardware components operate and

the way they are connected together to form computer system. It includes Hardware details

KTU - CST202 - Computer Organization and Architecture Module: 1

2

transparent to the programmer such as control signal and peripheral. It describes how the

computer performs. Example: circuit design, control signals, memory types this all are under

computer organization.

Computer Architecture:

Computer architecture is concerned with the structure and behavior of computer system

as seen by the user. It includes information, formats, instruction set and techniques for

addressing memory. It describes what the computer does.

FUNCTIONAL UNITS:

The computer system is divided into five separate units for its operation.

 Input Unit.

 ALU.

 Control Unit.

 Memory Unit.

 Output Unit.

Input & Output unit

The method of feeding data and

programs to a computer is accomplished

by an input device. Computer input

devices read data from a source, such as

magnetic disks, and translate that data into electronic impulses [ADC] for transfer into the CPU.

Some typical input devices are a keyboard, a mouse, scanner, etc.

Computer output devices converts the electronic impulses [DAC] into human readable

form. Output unit sends processed results to the outside world. Examples: Display screens,

Printers, plotters, microfilms, synthesizers, high-tech blackboards, film recorders, etc.

Memory Unit (MU)

 A Memory Unit is a collection of storage cells together with associated circuits needed to

transfer information in and out of storage. Data storage is a common term for archiving data or

information in a storage medium for use by a computer. It’s one of the basic yet fundamental

functions performed by a computer. It’s like a hierarchy of comprehensive storage solution for

fast access to computer resources.

A computer stores data or information using several methods, which leads to different

levels of data storage. Primary storage is the most common form of data storage which typically

refers to the random access memory (RAM). It refers to the main storage of the computer

because it holds data and applications that are currently in use by the computer. Then, there is

Figure 1

KTU - CST202 - Computer Organization and Architecture Module: 1

3

secondary storage which refers to the external storage devices and other external media such as

hard drive and optical media.

Arithmetic Logical Unit (ALU)

After you enter data through the input device it is stored in the primary storage unit.

Arithmetic Logical Unit performs the actual processing of data and instruction. The major

operations performed by the ALU are addition, subtraction, multiplication, division, logic and

comparison.

Data is transferred to ALU from storage unit when required. After processing, the output

is returned back to storage unit for further processing or getting stored.

Control Unit

The next component of computer is the control unit, which acts like the supervisor seeing

whether things are done in proper fashion. Control unit controls and coordinates the entire

operations of the computer system.

The control unit determines the sequence in which computer programs and instructions

are executed. Things like processing of programs stored in the main memory, interpretation of

the instructions and issuing of signals for other units of the computer to execute them.

It also acts as a switch board operator when several users access the computer

simultaneously. Thereby it coordinates the activities of computer’s peripheral equipment as they

perform the input and output. Therefore it is the manager of all operations.

Central Processing Unit (CPU)

The Arithmetic Logical Unit (ALU), Control Unit (CU) and Memory Unit (MU) of a

computer system are jointly known as the central processing unit. We may call CPU as the brain

of any computer system. It is just like a human brain that takes all major decisions, makes all

sorts of calculations and directs different part of the computer by activating and controlling the

operations.

BASIC OPERATIONAL CONCEPTS

To perform a given task, an appropriate program consisting of a list of instructions is

stored in the memory. Individual instructions are brought from the memory into the processor,

which executes the specified operations. [Load – Transfers data to register. Store – Transfers

data to memory.] A typical instruction might be

Load LOC,R2
The operand at LOC is fetched from the memory into the processor. The

operand is stored in register R2.

Add R1, R2, R3
Adds the contents of registers R1 and R2, then places their sum into

register R3.

Store R4, LOC This instruction copies the operand in register R4 to memory location

Add R1, R0 Add contents of R1, R0 and place the sum to R0.

KTU - CST202 - Computer Organization and Architecture Module: 1

4

The figure 2 shows how the memory and the processor

can be connected. In addition to the ALU and the

control circuitry, the processor contains a number of

registers used for several different purposes.

The instruction register (IR) holds the

instruction that is currently being executed. The

program counter (PC) contains the memory address of

the next instruction to be fetched and executed. In

addition to the IR and PC, general-purpose registers R0

through Rn−1, often called processor registers. They

serve a variety of functions, including holding

operands that have been loaded from the memory for

processing.

Operating Steps

 Programs reside in the memory through input devices.

 PC is set to point to the first instruction.

 The contents of PC are transferred to MAR. A read signal is sent to the memory.

 The first instruction is read out and loaded into MDR.

 The contents of MDR are transferred to IR.

 Decode and execute the instruction. Get operands for ALU (Address to MAR – Read

– MDR to ALU).

 Perform operation in ALU and Store the result back to general-purpose register.

 Transfer the result to memory (address to MAR, result to MDR – Write).

 During the execution, PC is incremented to the next instruction.

In addition to transferring data between the memory and the processor, the computer

accepts data from input devices and sends data to output devices.

In order to respond immediately to some instruction, execution of the current program

must be suspended. To cause this, the device raises an interrupt signal, which is a request for

service by the processor. The processor provides the requested service by executing a program

called an interrupt-service routine.

BUS STRUCTURES

The bus shown in Figure 3 is a simple structure that implements the interconnection

network. Only one source/destination pair of units can use this bus to transfer data at any one

time.

The bus consists of three sets of lines used to carry address, data, and control signals. I/O

device interfaces are connected to these lines, as shown in Figure 4 for an input device. Each I/O

KTU - CST202 - Computer Organization and Architecture Module: 1

5

device is assigned a unique set of addresses for

the registers in its interface. When the processor

places a particular address on the address lines, it

is examined by the address decoders of all devices

on the bus. The device that recognizes this

address responds to the commands issued on the

control lines.

The processor uses the control lines to

request either a Read or a Write operation, and the

requested data are transferred over the data lines.

When I/O devices and the memory share the same

address space, the arrangement is called memory-

mapped I/O. Any machine instruction that can

access memory can be used to transfer data to or

from an I/O device.

For example, if the input device is a

keyboard and if DATAIN is its data register and

DATAOUT may be the data register of a display

device interface.

Load R2, DATAIN reads the data from DATAIN and stores them into processor

register R2

Store R2, DATAOUT Sends the contents of register R2 to location DATAOUT.

The address decoder, the data and status registers, and the control circuitry required to

coordinate I/O transfers constitute the device’s interface circuit.

MEMORY LOCATIONS AND ADDRESSES

The memory consists of many millions of storage cells, each of which can store a bit of

information having the value 0 or 1. The memory is organized so that a group of n bits can be

stored or retrieved in a single, basic operation. Each group of n bits is referred to as a word of

information, and n is called the word length.

The memory of a computer can be schematically represented as a collection of words, as

shown in Figure 5.Modern computers have word lengths that typically range from 16 to 64 bits.

Aunit of 8 bits iscalled a byte. Machine instructions may require one or more words for

their representation. Accessing the memory to store or retrieve a single item of information,

either a wordor a byte, requires distinct names or addresses for each location.

The memory can have up to 2k addressable locations.The2k addresses constitute the

address space of the computer.

Figure 2

Figure 3

KTU - CST202 - Computer Organization and Architecture Module: 1

6

Figure 4

Figure 5

Byte Addressability

We now have three basic information quantities to deal with: bit, byte, and word. A byte

is always 8 bits, but the word length typically ranges from 16 to 64 bits. It is impractical to

assign distinct addresses to individual bit locations in the memory. The most practical

assignment is to have successive addresses refer to successive byte locations in the memory.

The term byte-addressable memory is used for this assignment. Byte locations have

addresses 0, 1, 2 . . . Thus, if the word length of the machine is 32 bits, successive words are

located at addresses 0, 4, 8… with each word consisting of four bytes.

Big-Endian and Little-Endian Assignments

There are two ways that byte addresses can be assigned across words. The name big-

endian is used when lower byte addresses are used for the more significant bytes (the leftmost

bytes) of the word. The name little-endian is used for the opposite ordering, where the lower

byte addresses are used for the less significant bytes (the rightmost bytes) of the word.

In both cases, byte addresses 0, 4, and 8… are taken as the addresses of successive words

in the memory of a computer with a 32-bit word length. These are the addresses used when

accessing the memory to store or retrieve a word.

Figure 6

KTU - CST202 - Computer Organization and Architecture Module: 1

7

Word Alignment

In the case of a 32-bit word length, natural word boundaries occur at addresses 0, 4, 8…

We say that the word locations have aligned addresses if they begin at a byte address that is a

multiple of the number of bytes in a word. For practical reasons associated with manipulating

binary-coded addresses, the number of bytes in a word is a power of 2. Hence, if the word length

is 16 (2 bytes), aligned words begin at byte addresses 0, 2, 4... and for a word length of 64 (23

bytes), aligned words begin at byte addresses 0, 8, 16…

Accessing Numbers and Characters

A number usually occupies one word, and can be accessed in the memory by specifying

its word address. Similarly, individual characters can be accessed by their byte address. For

programming convenience it is useful to have different ways of specifying addresses in program

instructions.

MEMORY OPERATIONS

Both program instructions and data operands are stored in the memory. Two basic

operations involvingthe memory are needed, namely, Read and Write.The Read operation

transfers a copy of the contents of a specific memory location tothe processor. The memory

contents remain unchanged.

To start a Read operation, theprocessor sends the address of the desired location to the

memory and requests that itscontents be read. The memory reads the data stored at that address

and sends them to theprocessor.

The Write operation transfers an item of information from the processor to a

specificmemory location, overwriting the former contents of that location. To initiate a

Writeoperation, the processor sends the address of the desired location to the memory,

togetherwith the data to be written into that location. The memory then uses the address and

datato perform the write.

INSTRUCTIONS AND INSTRUCTION SEQUENCING

A computer must have instructions capable of performing four types of operations:

• Data transfers between the memory and the processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers

Begin by discussing instructions for the first two types of operations. To facilitate the

discussion, we first need some notation.

KTU - CST202 - Computer Organization and Architecture Module: 1

8

Register Transfer Notation

To describe the transfer of information, the contents of any location are denoted by

placing square brackets around its name.

 R1 ← [LOC]

Thus, this expression means that the contents of memory location LOC are transferred

into processor register R1.

As another example, consider the operation that adds the contents of registers R1 and R2,

and places their sum into register R3. This action is indicated as

 R3 ← [R1] + [R2]

This type of notation is known as Register Transfer Notation (RTN). Note that the

righthandside of an RTN expression always denotes a value, and the left-hand side is the name of

a location where the value is to be placed, overwriting the old contents of that location.

Assembly-Language Notation

We need another type of notation to represent machine instructions and programs. For

this, we use assembly language. For example, a generic instruction that causes the transfer

described above, from memory location LOC to processor register R1, is specified by the

statement

Move LOC, R1

The contents of LOC are unchanged by the execution of this instruction, but the old

contents of register R1 are overwritten.

The second example of adding two numbers contained in processor registers R1 and R2

and placing their sum in R3 can be specified by the assembly-language statement

Add R1, R2, R3

In this case, registers R1 and R2 hold the source operands, while R3 is the destination.

Basic Instruction Types

(1)Three Address Instruction:

Operation Source1, Source 2, Destination

Add A, B, C

Operand A and B are source operands, C is the destination operand. Add is the operation

to be performed on the operands.

KTU - CST202 - Computer Organization and Architecture Module: 1

9

(2)Two Address Instruction:

Operation Source, Destination

Add A, B

Performs the operation B ← [A] + [B]. When the sum is calculated, the result is sent to

memory and stored in location B, replacing the original contents of this location. This means

operand B is both source and destination.

 The problem of adding the contents of location A and B without destroying either of them. and

to place the sum in location C is solved using the Move instruction. [Move works same as

Copy]. Move Source, Destination.

 Move B,C

 Add A,C

(3)One Address Instruction:

A processor register called Accumulator is used.

Add A - Add the contents of memory location A to the contents of accumulator register and

place the sum back to the accumulator.

Load A - Load instruction copies the content of memory location A into accumulator

Store A -Store instruction copies the content of accumulator into memory location A

Instruction Execution and Straight-Line Sequencing

Let’s consider task C = A + B, implemented as C←[A] + [B]. Figure 8 shows a possible

program segment for this task as it appears in the memory of a computer. We assume that the

word length is 32 bits and the memory is byte-addressable. The three instructions of the program

are in successive word locations, starting at location i.

Since each instruction is 4 bytes long, the second and third instructions are at addresses

i + 4 and i + 8. Let us consider how this program is executed.

 To begin executing a program, the address of its first instruction (i in our example)

must be placed into the PC.

 Then, the processor control circuits use the information in the PC to fetch and execute

instructions, one at a time, in the order of increasing addresses. This is called

straight-line sequencing.

 During the execution of each instruction, the PC is incremented by 4 to point to the

next instruction. Thus, after the Move instruction at location i + 8 is executed, the PC

contains the value i + 12, which is the address of the first instruction of the next

program segment.

KTU - CST202 - Computer Organization and Architecture Module: 1

10

Executing a given instruction is a two-

phase procedure. In the first phase, called

instruction fetch, the instruction is fetched

from the memory location whose address is in

the PC. This instruction is placed in the

instruction register (IR) in the processor.

At the start of the second phase, called

instruction execute, the instruction in IR is

examined to determine which operation is to be

performed. The specified operation is then

performed by the processor. This involves a

small number of steps such as fetching

operands from the memory or from processor

registers, performing an arithmetic or logic

operation, and storing the result in the

destination location.

At some point during this two-phase procedure, the contents of the PC are advanced to

point to the next instruction. When the execute phase of an instruction is completed, the PC

contains the address of the next instruction, and a new instruction fetch phase can begin.

Branching

Consider the task of adding a list of n numbers. LOOP is a straight line sequence of

instructions executed as many times as needed. Assume that the number of entries in the list, n, is

stored in memory location N. Register R1 is used as a counter to determine the number of times

the loop is executed. Hence, the contents of location N are loaded into register R1 at the

beginning of the program. Then, within the body of the loop, the instruction Decrement R1

reduces the contents of R1 by 1 each time through the loop. Execution of the loop is repeated as

long as the content of R1 is greater than zero.

We now introduce branch instructions. This type of instruction loads a new address into

the program counter. As a result, the processor fetches and executes the instruction at this new

address, called the branch target, instead of the instruction at the location that follows the

branch instruction in sequential address order.

A conditional branch instruction causes a branch only if a specified condition is

satisfied. If the condition is not satisfied, the PC is incremented in the normal way, and the next

instruction in sequential address order is fetched and executed.

In the program in Figure 2.10, the instruction

KTU - CST202 - Computer Organization and Architecture Module: 1

11

Branch>0 LOOP is same as

Branch_if_[R1]>0 LOOP

is a conditional branch instruction that

causes a branch to location LOOP if the contents of

register R1 are greater than zero. This means that

the loop is executed as long as there are entries in

the list that are yet to be added to R0. At the end of

the n
th

 pass through the loop, the Decrement

instruction produces a zero and hence branching

does not occur.

 Move instruction is fetched and executed. It

moves the final result from R0 into memory

location SUM.

Condition Codes

The processor keeps track of instruction about the

results of various operations for use by subsequent

conditional branch instructions. This is

accomplished by recording the required information

in individual bits often called as conditional code flags. These flags are usually grouped

together in a special processor register called the condition code register or status register.

Individual condition codes are set to 1 or cleared to 0, depending upon the outcome of the

operation performed.

KTU - CST202 - Computer Organization and Architecture Module: 1

12

ADDRESSING MODES

The different ways for specifying the locations of instruction operands are known as

addressing modes.

1. Implementation of Variables and Constants

Variables are found in almost every computer program. In assembly language, a variable

is represented by allocating a register or a memory location to hold its value. This value can be

changed as needed using appropriate instructions.

Register mode: The operand is the contents of a processor register; the name (address) of

the register is given in the instruction.

Example: The instruction Add R1, R2, R3 uses the Register mode for all three operands.

Registers R1 and R2 hold the two source operands, while R3 is the destination.

Absolute/Direct mode: The operand is in a memory location; the address of this location

is given explicitly in the instruction.

Example: The Absolute mode is used in the instruction Move LOC, R1 which copies the

value in the memory location LOC into register R1.

Immediate mode: The operand is given explicitly in the instruction.

Example: The instruction Add #200, R1, R2 adds the value 200 to the contents of register

R1, and places the result into register R2. A common convention is to use the number sign (#) in

front of the value to indicate that this value is to be used as an immediate operand.

2. Indirection and Pointers

 In the addressing modes that follow, the instruction does not give the operand or its

address explicitly. Instead, it provides information from which the memory address of the

operand can be determined. This address is known as Effective Address (EA) of the

operand.

Indirect mode: The effective address of the operand is the contents of a register or

memory location whose address appears in the instruction. We denote indirection by placing the

name of the register given in the instruction in parentheses ().

To execute the Add instruction in Figure 2.11(a), the processor uses the value B, which is

in register R1, as the effective address of the operand. It requests a read operation from the

memory to read the contents of location B. The value read is the desired operand, which the

processor adds to the contents of register R0. Indirect addressing through a memory location is

also possible as shown in Figure 2.11(b). In this case the processor first reads the contents of

memory location A, then request a second read operation using the value B as an address to

obtain the operand.

KTU - CST202 - Computer Organization and Architecture Module: 1

13

The register or memory location that contains the address of an operand is called a

pointer.

3. Indexing and Arrays

 The next addressing mode we discuss provides a different kind of flexibility for accessing

operands. It is useful in dealing with lists and arrays.

Index mode: The effective address of the operand is generated by adding a constant

value to the contents of a register. The register used in this mode is referred as the index

register.

We indicate the Index mode symbolically as X(Ri) where X denotes a constant signed

integer value contained in the instruction and Ri is the name of the register involved. The

effective address of the operand is given by EA = X + [Ri]. The contents of index register are

not changed in the process of generating the effective address.

KTU - CST202 - Computer Organization and Architecture Module: 1

14

Figure 2.13 illustrates two ways of using the index mode. In Figure 2.13(a), the index

register R1 contains the address of memory location and the value X defines an offset

(displacement) from this address to the location where the operand is found. Figure 2.13(b), Here

the constant X corresponds to a memory address and the contents of the index register define the

offset of the operand. in either case, the effective address is the sum of two values; one is given

explicitly in the instruction and the other is stored in a register.

Base with index: A second register may be used to contain the offset X, in which case the

index mode is written as, (Ri,Rj). The effective address is the sum of the contents of register Ri

and Rj.The second register is called as base register. This form of addressing provides more

flexibility in accessing operands, because both components of the effective address can be

changed.

Base with index and offset: Uses two registers plus a constant denoted as X(Ri,Rj). The

effective address is the sum of the constant X and the contents of register Ri and Rj. This added

flexibility is useful in accessing multiple components inside each item in a record, where the

beginning of an item is specified by (Ri,Rj) part of the addeessing mode.

4. Relative Addressing

In index addressing, if the program counter PC, is used instead of a general-purpose

register then X(PC) can be used to address a memory location that is X bytes away from the

location presently pointed to by the program counter. Since the addressed location is identified

"relative" to the program counter, which always identifies the current execution point in a

program, the name Relative mode is associated with this type of addressing.

Relative mode: The effective address is determined by the Index mode using the

program counter in place of the general-purpose register Ri.

This mode can be used to access data operands. But, its most common use is to specify

the target address in branch instructions. An instruction such as Branch>0 LOOP causes

program execution to go to the branch target location identified by the name LOOP if the branch

condition is satisfied.

5. Additional Modes

Many computers provide additional modes intended to aid certain programming tasks.

The two modes described next are useful for accessing data items in successive locations in the

memory.

Auto-increment mode:The effective address of the operand is the contents of a register

specified in the instruction. After accessing the operand, the contents of this register are

automatically incremented to point to the next item in a list.

We denote the Auto-increment mode by putting the specified register in parentheses, to

show that the contents of the register are used as the effective address, followed by a plus sign to

KTU - CST202 - Computer Organization and Architecture Module: 1

15

indicate that these contents are to be incremented after the operand is accessed. Thus, the Auto-

increment mode is written as (Ri)+

Auto-decrement mode:The contents of a register specified in the instruction are first

automatically decremented and are then used as the effective address of the operand.

The Auto-increment mode is written as -(Ri)

BASIC PROCESSING UNIT - SOME FUNDAMENTAL CONCEPTS

To execute a program, the processor fetches one instruction at a time and performs the

operations specified. Instructions are fetched from successive memory locations until a branch

or a jump instruction is encountered.

The processor keeps track of the address of the memory location containing the next

instruction to be fetched using the program counter, PC. After fetching an instruction, the

contents of the PC are updated to point to the next instruction in the sequence. A branch

instruction may load a different value into the PC. Another key register in the processor is the

instruction register, IR.

Suppose that each instruction comprises 4 bytes, and that it is stored in one memory

word. To execute an instruction, the processor has to perform the following three *steps:

1. Fetch the contents of the memory location pointed to by the PC. The contents of this

location are the instruction to be executed; hence they are loaded into the IR. In

register transfer notation, the required action is

IR←[[PC]]

KTU - CST202 - Computer Organization and Architecture Module: 1

16

2. Increment the PC to point to the next instruction. Assuming that the memory is byte

addressable, the PC is incremented by 4; that is

PC←[PC] + 4

3. Carry out the operation specified by the instruction in the IR.

Fetching an instruction and loading it into the IR is usually referred to as the instruction

fetch phase. Performing the operation specified in the instruction constitutes the instruction

execution phase.

Single Bus organization of Processor

Figure shows the organization in which the arithmetic and logic unit (ALU) and all the

registers are interconnected via a single common bus. This bus is internal to the processor and

should not be confused with the external bus that connects the processor to the memory and I/O

devices.

Figure 7: Single Bus Organization

The data and address lines of the external memory bus are connected to the internal

processor bus via the memory data register, MDR, and the memory address register, MAR,

KTU - CST202 - Computer Organization and Architecture Module: 1

17

respectively. Register MDR has two inputs and two outputs. Data may be loaded into MDR

either from the memory bus or from the internal processor bus.

The data stored in MDR may be placed on either bus. The input of MAR is connected to

the internal bus, and its output is connected to the external bus. The control lines of the memory

bus are connected to the instruction decoder and control logic block.

Three registers Y, Z, and TEMP registers are used by the processor for temporary

storage during execution of some instructions. The multiplexer MUX selects either the output of

register Y or a constant value 4 to be provided as input A of the ALU. The constant 4 is used to

increment the contents of the program counter.

With few exceptions, an instruction can be executed by performing one or more of the

following operations in some specified sequence:

 Transfer a word of data from one processor register to another or to the ALU

 Perform an arithmetic or a logic operation and store the result in a processor register

 Fetch the contents of a given memory location and load them into a processor

register

 Store a word of data from a processor register into a given memory location

Register Transfers

Instruction execution involves a sequence of steps in which data are transferred from one

register to another. For each register, two control signals are used to place the contents of that

register on the bus or to load the data on the bus into

the register.

The input and output of register Ri are

connected to the bus via switches controlled by the

signals Riin and Riout, respectively. When Riin is set to

1, the data on the bus are loaded into Ri. Similarly,

when Riout, is set to 1, the contents of register Ri are

placed on the bus. While Riout is equal to 0, the bus

can be used for transferring data from other registers.

Suppose that we wish to transfer the contents

of register R1 to register R4. This can be

accomplished as follows:

 Enable the output of register R1 by setting R1out to 1. This places the contents of R1

on the processor bus.

 Enable the input of register R4 by setting R4in, to 1. This loads data from the

processor bus into register R4.

Figure 8

KTU - CST202 - Computer Organization and Architecture Module: 1

18

7All operations and data transfers within the processor take place within time periods

defined by the processor clock.

Performing an Arithmetic or Logic Operation

The ALU is a combinational circuit that has no internal storage. It performs arithmetic

and logic operations on the two operands applied to its A and B inputs, one of the operands is

the output of the multiplexer MUX and the other operand is obtained directly from the bus. The

result produced by the ALU is stored temporarily in register Z.

Therefore, a sequence of operations to add the contents of register R1 to those of register

R2 and store the result in register R3 is

1. R1out, Yin

2. R2out, Select Y, Add, Zin

3. Zout R3in

Step 1:The output of register R1 and the input

of register Y are enabled, causing the contents of R1 to

be transferred over the bus to Y.

Step 2:The multiplexer's Select signal is set to

SelectY, causing the multiplexer to gate the contents of

register Y to input A of the ALU. At the same time, the

contents of register R2 are gated onto the bus and,

hence, to input B. The function performed by the ALU

depends on the signals applied to its control lines. In

this case, the Add line is set to 1, causing the output of

the ALU to be the sum of the two numbers at inputs A

and B. This sum is loaded into register Z because its

input control signal is activated.

Step 3:The contents of register Z are transferred

to the destination register, R3. This last transfer cannot

be carried out during step 2, because only one register

output can be connected to the bus during any clock

cycle.

Fetching a Word from Memory

To fetch a word of information from memory, the processor has to specify the address of

the memory location where this information is stored and request a Read operation. The

connections for register MDR are illustrated in Figure 4.

 It has four control signals: MDRin and MDRout, control the connection to the internal

bus, and MDRinE and MDRoutE control the connection to the external bus.

Figure 9

KTU - CST202 - Computer Organization and Architecture Module: 1

19

Figure 10

As an example of a read operation, consider the instruction Move (R1),R2. The actions

needed to execute this instruction are:

1. MAR  [RI]

2. Start a Read operation on the memory bus

3. Wait for the MFC(Memory Function Completed) response from the memory

4. Load MDR from the memory bus

5. R2  [MDR]

These actions may be carried out as separate steps, but some can be combined into a

single step. Each action can be completed in one clock cycle, except action 3 which requires one

or more clock cycles, depending on the speed of the addressed device.

The memory read operation requires three steps, which can be described by the signals

being activated as follows:

1. Rlout, MARin, Read

2. MDRinE, WMFC

3. MDRout, R2in

where WMFC is the control signal that causes the processor's control circuitry to wait for

the arrival of the MFC signal.

Storing a word in Memory

Writing a word into a memory location follows a similar procedure. The desired address

is loaded into MAR. Then, the data to be written are loaded into MDR, and a Write command is

issued. Hence, executing the instruction Move R2,(R1) requires the following sequence: 1.

1. R1out, MARin

2. R2out, MDRin, Write

3. MDRoutE, WMFC

As in the case of the read operation, the Write control signal causes the memory bus

interface hardware to issue a Write command on the memory bus. The processor remains in step

3 until the memory operation is completed and an MFC response is received.

KTU - CST202 - Computer Organization and Architecture Module: 1

20

EXECUTION OF A COMPLETE INSTRUCTION

Consider the instruction Add (R3),R1 which adds the contents of a memory location

pointed to by R3 to register R 1.

Executing this instruction requires the following actions:

1. Fetch the instruction.

2. Fetch the first operand (the contents of the memory location pointed to by R3).

3. Perform the addition.

4. Load the result into RI.

Instruction execution proceeds as follows.

Step 1: The instruction fetch operation is initiated

by loading the contents of the PC into the MAR and

sending a Read request to the memory. The Select signal

is set to Select4, which causes the multiplexer MUX to

select the constant 4. This value is added to the operand at

input B, which is the contents of the PC, and the result is

stored in register Z.

Step 2: The updated value is moved from register

Z back into the PC, while waiting for the memory to

respond.

Step 3:The word fetched from the memory is loaded into the IR.

(Steps 1 through 3 constitute the instruction fetch phase, which is the same for all

instructions.)

Step 4: The instruction decoding circuit interprets the contents of the IR. This enables the

control circuitry to activate the control signals for steps 4 through 7, which constitute the

execution phase. The contents of register R3 are transferred to the MAR in step 4, and a memory

read operation is initiated.

Step 5: the contents of R1 are transferred to register Y, to prepare for the addition

operation.

Step 6: When the Read operation is completed, the memory operand is available in

register MDR, and the addition operation is performed. The contents of MDR are gated to the

bus, and thus also to the B input of the ALU, and register Y is selected as the second input to the

ALU by choosing SelectY.

Step 7: The sum is stored in register Z, and then transferred to R1. The End signal causes

a new instruction fetch cycle to begin by returning to step 1.

This discussion accounts for all control signals in Figure 11 except Yin in step 2. There is

no need to copy the updated contents of PC into register Y when executing the Add instruction.

Figure 11

KTU - CST202 - Computer Organization and Architecture Module: 1

21

But, in Branch instructions the updated value of the PC is needed to compute the Branch target

address.

To speed up the execution of Branch instructions, this value is copied into register Y in

step 2. Since step 2 is part of the fetch phase, the same action will be performed for all

instructions. This does not cause any harm because register Y is not used for any other purpose at

that time.

Branch Instruction

A branch instruction replaces the contents of the PC with the branch target address. This

address is usually obtained by adding an offset X, which is given in the branch instruction, to the

updated value of the PC. Figure 12 gives a control sequence that implements an unconditional

branch instruction. Processing starts, as usual, with the fetch phase. This phase ends when the

instruction is loaded into the IR in step 3.

The offset value is extracted from the IR by the

instruction decoding circuit, which will also perform sign

extension if required. Since the value of the updated PC is

already available in register Y, the offset X is gated onto

the bus in step 4, and an addition operation is performed.

The result, which is the branch target address, is loaded

into the PC in step 5.

The offset X used in a branch instruction is usually

the difference between the branch target address and the

address immediately following the branch instruction.

For example: if the branch instruction is at location 2000 and if the branch target address

is 2050, the value of X must be 46. The PC is incremented during the fetch phase before

knowing the type of the instruction being executed. Thus, when the branch address is computed

in step 4, the PC value uses the updated value, which points to the instruction following the

branch instruction in the memory.

MULTIPLE BUS ORGANIZATION

We used the simple single-bus structure to illustrate the basic ideas. The resulting control

sequences are quite long because only one data item can be transferred over the bus in a clock

cycle.

To reduce the number of steps needed, most commercial processors provide multiple

internal paths that enable several transfers to take place in parallel. Figure depicts a three-bus

structure used to connect the registers and the ALU of a processor.

The register file is said to have three ports. There are two outputs, allowing the contents

of two different registers to be accessed simultaneously and have their contents placed on buses

A and B. The third port allows the data on bus C to be loaded into a third register during the

same clock cycle.

Figure 12

KTU - CST202 - Computer Organization and Architecture Module: 1

22

Buses A and B are used to transfer the source operands to the A and B inputs of the ALU,

where an arithmetic or logic operation may be performed. The result is transferred to the

destination over bus C. If needed, the ALU may simply pass one of its two input operands

unmodified to bus C. We will call the ALU control signals for such an operation R=A or R=B.

The three-bus arrangement obviates the need for registers Y and Z.

A second feature is the introduction of the

Incrementer unit, which is used to increment the PC by 4.

Using the Incrementer eliminates the need to add 4 to the PC

using the main ALU. The source for the constant 4 at the

ALU input multiplexer is still useful. It can be used to

increment other addresses, such as the memory addresses in

LoadMultiple and StoreMultiple instructions.

Consider the three-operand instruction

Add R4,R5,R6

The control sequence for executing this instruction is

given as below

Step 1: the contents of the PC are passed through the

ALU, using the R=B control signal, and loaded into the MAR

to start a memory read operation. At the same time the PC is

incremented by 4. Note that the value loaded into MAR is the

original contents of the PC. The incremented value is loaded

into the PC at the end of the clock cycle and will not affect the contents of MAR.

Step 2: the processor waits for MFC and loads the data received into MDR.

Step 3: Transfers the data received in MDR to IR.

Step 4: The execution phase of the instruction requires only one control step to complete.

By providing more paths for data transfer a significant reduction in the number of clock

cycles needed to execute an instruction is achieved.

