
Module 2

Register transfer logic: inter register transfer — arithmetic, logic and shift micro

operations. Processor logic design: - processor organization — Arithmetic logic unit -

design of arithmetic circuit - design of logic circuit - Design of arithmetic logic unit -

status register —design of shifter - processor unit — design of accumulator.

1) Explain different type of micro-operations?

• Microoperations are the basic operations that can be performed by system

on data stored in registers.

• Microoperations are used by processors to complete their tasks to transfer

data from one place to another.

Types of Microoperations

1. Inter register transfer micro-operations

2. Arithmetic micro-operations

3. Logic micro-operations

4. Shift micro-operations

1)inter register transfer micro-operations

• These micro-operations do not change the information content when the

binary information moves from one register to another.

• The registers in a digital system are designated by capital letters. Examples

A, B, R1, R2 etc.

• The register that holds the address of the memory unit is called Memory

Address Register (MAR). The cells of an n bit register are numbered in

sequence from 1 to n, starting either from the left or from the right.

• A register can be represented in 4 ways which is shown in the figure.

1. Figure (a) shows the most common way to represent a register is with a

rectangular box in which name of the register is specified within the box.

2. In figure (b), it shows the individual cells of a register is assigned a letter

with a subscript number and is marked from right to left.

3. The numbering of cells from right to left can be marked on top of the box

as in figure (c).

4. A 16 bit register is partitioned into two parts, one high order part (H)

consisting of eight high ordered cells and one lower order part (L)

consisting of eight low ordered cells as in figure (d).

Conditional transfer

• The condition that determines when the transfer is to occur is called a

control function. A control function is a Boolean function that can be equal

to 0 or 1. The control function can be specified with the following

statement:

x'T1: AB

• It means that the transfer operation be executed by the hardware only when

the Boolean function x'T1=1.That is, variable x=0 and timing variable

T1=1.

• Example: Hardware implementation of a controlled transfer x'T1: AB is

shown in figure. Here AB transfers the contents of register B to register

A. Contents of source register B do not change after the transfer.

• The basic symbols of the register transfer logic are listed in the following

table.

2.Arithmetic Micro operations

• The basic arithmetic micro-Operations are add, subtract, complement, and

shift.

• Add operation- It can be specified by the statement: FA + B That is, the

contents of register ‘A’ is added to the contents of register B and the sum

is transferred to register F. Here we require 3 registers and one digital

function that addition operation such as parallel adder.

• The other basic arithmetic operations the following table.

• Arithmetic subtraction is most often implemented through

complementation and addition. That is,

FA+B’+1

• Adding 1 to the 1’s complement of B gives the 2's complement of B. When

adding 2's complement of B to A it will results in minus operation (A-B).

• Increment and decrement micro-operations are implemented with an up

counter and down counter.

• There must be a direct relationship between the statements written in a

register transfer language and the registers and digital functions which are

required for their implementation.

3. Logic Micro Operations

• Logic micro-operations specify binary operations for a string of bits stored

in registers. These operations consider each bit in the registers separately

and treat it as a binary variable.

• For example, consider the AND operation of A and B. Content of A is 1101

and content of B is 1010. Then,

1101(A)

1010(B)

A AND B will be 1000 (it will contain in the register F)

• There are 16 different logic operations can be performed with two binary

variables, as described in the below table.

• All 16 logic operations can be expressed in terms of the AND, OR and

complement operations. Special symbols are adopted for these three micro

operations.

4.Shift Micro Operations

• Shift micro-operations transfer binary information between registers in

serial computers. They are also used in parallel computers for arithmetic,

logic and control operations

• Registers can be shifted to the left or right. There are no conventional

symbols for shift. Here we are adopting the symbols shl and shr for shift

left and shift right operations respectively.

Example 1: Shl A

• Here when we are shifting to left the bit at position A0 is vacant. This gap

can be filled by transferring the bit of position An in the original register

A. This can be considered as a circular shift.

AShl A, A0 An

Example 2: Shr A

• When we are shifting the register content to the right, the bit at position An

is vacant. This gap can be tilled by receiving the value of the 1 bit register

E.

AShr A, An E

2) Design an arithmetic logic unit (ALU unit)?

• An ALU is a multioperation, combinational logic digital function. It can

perform a set of basic arithmetic operations and a set of logic operations.

• The ALU has number of selection lines to select a particular operation in

the unit. The selection lines are decoded within the ALU.

• The four data inputs from A are combined with the four inputs B to

generate an operation at the F outputs.

• The mode select input S2 distinguishes between arithmetic and logic

operations. The two function select inputs S1 and S0 specify the particular

arithmetic or logic operation to be generated.

• With three selection variables it is possible to specify four arithmetic

operations and four logical operations.

• The input and output carries have meaning only during an arithmetic

operation. The design of ALU can be carried out in 3 stages:

1. Design of Arithmetic section

2. Design of Logic section

3. Modification of arithmetic section so that it can perform both arithmetic

and logic operations.

Q) Design arithmetic Circuit?

• The basic component of arithmetic section of an ALU is a parallel adder.

• Parallel adder is constructed with a number of full adder circuits connected

in cascade. By combining the data inputs to the parallel adder, it is possible

to obtain different types of arithmetic operations.

• The following figure demonstrates the arithmetic operations obtained when

one set of inputs to the parallel adder is controlled externally. The no of

bits in the parallel adder may be of any value.

• By changing the B input and Cin, we get 8 operations. So the input B is

applied in four different form by using following circuit. The circuit that

controls input B to provide the function is called a true/complement,

one/zero element. This circuit can be shown as follows.

• The A input is applied directly to the 4-bit parallel adder and the B input is

modified. The resultant arithmetic circuit is shown in below figure.

• The functional table for full adder circuit is shown in figure.

Function select Y

equals

Output equals Function

S1 S0 Cin

0 0 0 0 F=A Transfer A

0 0 1 0 F=A+1 Increment A

0 1 0 B F=A+B Add B to A

0 1 1 B F=A+B+1 Add B to A plus 1

1 0 0 B’ F=A+B’ Add 1’s complement of B to A

1 0 1 B’ F=A+B’+1 Add 2’s complement of B to A

1 1 0 All 1’s F=A-1 Decrement A

1 1 1 All 1’s F=A Transfer A

Q) Design Logic circuit?

• The logic microoperation manipulates bits of operands separately and treat

each bit as a binary variable. The 16-logic operation can be generated in

one circuit and selected by means of four selection lines.

• All logic operations can be obtained by means of AND, OR and NOT

operations.

• For three operations, we need two selection variables. But, with two

selection variables, we can select four operations. So we can include one

more operation XOR in our design.

• The above diagram shows design of a logic circuit. In this one typical stage

designated by subscript i. The circuit must be repeated n times for an n bit

logic circuit.

• The four gates generate the four logic operations OR, XOR, AND and

NOT. The two selection variables in the multiplexer select one of the gates

for the output.

• The function table lists the output logic generated as a function of two

selection variables.

S1 S0 Output Operation

0 0 Fi=Ai+Bi OR

0 1 Fi=Ai Bi XOR

1 0 Fi=AiBi AND

1 1 Fi=Ai’ NOT

Final design of ALU unit by combining arithmetic circuit and logic

circuit

• The logic circuit can be combined with the arithmetic circuit to

produce one arithmetic logic unit.

• Selection variables S1 and S0 can be made common to both

sections provided we are using a third selection variable S2 to

differentiate between the two. This configuration is illustrated in

the following figure.

• The outputs of the logic and arithmetic circuits in each stage go

through a multiplexer with selection variable S2. When S2=0, the

arithmetic output is selected, but when S2= 1, the logic output is

selected.

Q) Design an adder or subtractor circuit with one selection variable

‘s’ and two inputs A and B. When s=0 the circuit performs A+B.

When s=1, the circuit performs A-B by taking 2’s complement of

B?

Q) Design of Combinational Logic Shifter?

• The shift unit attached to the processor transfers the output of the ALU

onto the output bus. Shifter may function in 4 different ways.

1. The shifter may transfer the information directly without a shift.

2. The shifter may shift the information to the right.

3. The shifter may shift the information to the left.

4. In some cases no transfer is made from ALU to the output bus.

• A shifter is a bi-directional shift-register with parallel load. The

information from ALU can be transferred to the register in parallel and then

shifted to the right or left.

• A combinational logic shifter can be constructed with multiplexers. The

following figure will show the same.

• In this configuration, a clock pulse is needed for the transfer to the shift

register, and another pulse is needed for the shift.

• Another clock pulse may also in need of when information is passed from

shift register to destination register.

• The number of clock pulses may reduce if the shifter is implemented with

a combinational circuit. In such cases, only one clock pulse is required to

transfer from source register to destination register.

• In a combinational logic shifter, the signals from the ALU to the output bus

propagate through gates without the need for clock pulse.

• Shifter operation can be selected by two variables H1H0.

1. If H1 H0=00, no shift is executed and the signals from F go directly

to the S lines.

2. If H1 H0=01, shift right is executed

3. If H1 H0=10, shift left is executed.

4. If H1 H0=11, no operation

• The following summarizes the operation of a shifter.

H1 H0 Operation Function

0 0 SF Transfer F to S (no shift)

0 1 Sshr F Shift right F into S

1 0 Sshl F Shift left F into S

1 1 S0 Transfer 0’s into S

• The above diagram of combinational-logic shifter shows only four stages

of the shifter. The shifter must consist of n stages in a system with n parallel

lines.

• Inputs IR and IL serve as serial inputs for the last and first stages to fill the

gap which must occur during shift right and shift left operations

respectively.

• A selection variable H2 may use for specifying what goes into IR and IL.

Q) Design 4-bit Status Register?

• The relative magnitude of two numbers may be determined by subtracting

one number from the other and then checking certain bit conditions in the

resultant difference. This status bit conditions are stored in a status register.

• The checking conditions may vary for signed and unsigned numbers.

Status register is a 4-bit register. The four bits are C (carry), Z (zero), S

(sign) and V (overflow). These bits are set or cleared as a result of an

operation performed in the ALU.

1. Bit C is set if the output carry of an ALU is 1. It is cleared if the

output carry is 0.

2. Bit S is set to 1 if the highest order bit of the result in the output of

the ALU is 1. If the highest order bit is 0, this bit is cleared.

3. Bit Z is set to 1 if the output of the ALU contains all 0’s. That is if

the result is zero Z bit is 1, and if the result is nonzero Z bit is 0.

4. Bit V is set if the exclusive OR of carries C8 and C9 is 1, and cleared

otherwise. This is the condition for overflow when the numbers are

in Signed 2’s complement representation.

• The following figure shows the block diagram of an 8-bit ALU with a 4-

bit status register.

• After an ALU operation, status bits can be checked to determine the

relationship that exist between the values of A and B. If bit V is set after

the addition two signed numbers, it indicates an overflow condition.

• If Z is set after an exclusive OR operation, it indicates that A=B. A single

bit in A can be checked to determine if it is 0 or 1 by masking all bits except

the bit in question and then checking the Z status bit.

• The following table lists the various conditions for determining the relative

magnitudes of A and B by checking the status bit when the operation is

performed on unsigned binary numbers.

Relation
Condition of Status

bits

Boolean

function

A<B C=1 C

A<=B C=1or Z=1 C+Z

A>B C=0 C’

A>=B C=0 or Z=1 C’+Z

A=B Z=1 Z

A≠ B Z=0 Z’

• The following table lists the various conditions for determining the relative

magnitudes of A and B by checking the status bits when the operation is

performed on signed binary numbers.

Relation Condition of Status bits
Boolean

function

A>B Z=0 and (S=0,V=0 or S=1,V=1) Z’(S ⨀V)

A>=B Z=1 or (S=0,V=0 or S=1,V=1) (S ⨀V)

A<B S=1,V=0 or S=0,V=1 (S ⨁ V)

A<=B S=1,V=0 or S=0,V=1or Z=1 (S ⨁ V)+Z

A=B Z=1 Z

A≠ B Z=0 Z’

Q) Draw and explain the block diagram of Processor Unit?

• The micro-operations within the processor during a given clock cycle can

be determined by the selection variables. The selection variables control

the buses, the ALU, the shifter, and the destination register.

• A block diagram for the processing unit is shown in the below figure.

• It consists of seven registers (R1 to R7) and a status register. The output of

the seven registers goes through two multiplexers to select the inputs to the

ALU.

• If the input is giving from any external source it can also accepting by the

same multiplexers. The output from the ALU goes through a shifter and

then to a set of external output terminals.

• It is also possible to transfer the content from shifter to any one of the

registers.

• There are 16 selection variables in the unit. It can be specified by a control

word. The 16 bit control word is shown in fig.

• The control word is partitioned into six fields, with each field is designated

by a letter name. All the fields, except Cin, have a code of 3 bits.

1. A selects the input register for the left side of ALU.

2. B selects the input register for the right side of ALU.

3. D selects the destination register.

4. F and Cin bits together selects the function for ALU.

5. H selects the type of shift in shifter unit.

• The table given below will gives you the functions of control variables for

the processor.

Binary

code

Function of selection variable

A

B

D

F with

Cin=0

F with

Cin=1
H

000 Input data Input data None A,C0 A+1 No shift

001 R1 R1 R1 A+B A+B+1 Shift right

010 R2 R2 R2 A-B-1 A-B Shift left

011 R3 R3 R3 A-1 A,C1 0’s to o/p bus

100 R4 R4 R4 AVB ………. …………

101 R5 R5 R5 A⨁B ………. Calculate right

with C

101 R6 R6 R6 A B ……… ………….

111 R7 R7 R7 A’ ……….. Calculate left

with C

Q) Design of Accumulator?

• Accumulator register is a multipurpose register capable of performing

many micro-operations. The organization of a processor unit with an

accumulator register is shown below.

• The ALU associated with the register maybe constructed as a

combinational circuit. In this configuration, the accumulator register with

parallel load is connected to the ALU.

• The block diagram of the accumulator that forms as sequential circuit is

shown below:

• Accumulator can also perform data processing operations. Total of nine

operations are considered here for the design of accumulator circuit.

• These operations are described below.

Design Procedure

1. Add B to A (P1)

• Add micro-operation is initiated when control variable P, is 1. To

perform addition operation, accumulator can use a parallel adder

composed of full adders. The full adder in each stage 1 will accept

the input and and a previous carry bit C1.

• Sum bit is transferred to flip flop Ai, and output carries Ci+1 is

transferred to the next stage as input carry of that stage.

• The state table of a full adder, when considered as a sequential

circuit is shown below.

• The excitation input for the JK flip flop is shown below for reference.

• According to these values the above flip flop inputs are set. The flip flop

input functions and the Boolean functions for the output are simplified in

the maps as shown in fig.

These two equations should affect the flip flop only when PI is enabled.

Therefore, they should be ANDed with control variable P, Then the equation

becomes.

JAi =B1C1’P1+B1’C1P1

KAi = B1C1’P1+B1’C1P1

Ci+1=A1B1+A1C1+B1C1

2. Clear (P2)

• Control variable P2 clears all flip flops in register A. To cause this transition

in a JK flip flop. we need only apply control satiable P2 to the K input of

the flip flop.

• The J input will he assumed to be 0 if nothing is applied on it. The input

functions can be written as.

JAi =0

KAi =P2

3. COMPLEMENT(P3)

• To cause this transition in a JK flip-flop we need to apply p3 to both

J and K inputs.

JAi =P3 KAi =P3

2. AND (P4)

• This micro operation is initiated with control variable P4.This

operation performs the logic AND operation between Ai and Bi and

transfers the result to A.

• The excitation table for this operation is as shown below.

Present State Input Next State Flip-flop Inputs

Ai Bi Ai JAi KAi

0 0 0 0 X

0 1 0 0 X

1 0 0 X 1

1 1 1 X 0

• The next state of Ai will be 1 only when the present state of Ai and data

input Bi, is 1. The flip flop input functions can be simplified with the maps

and the equations can be written as:

JAi =0

KAi =Bi’

• By including the control variable p4, the equation can be rewritten as:

JAi =0

KAi =Bi’P4

4. OR (P5)

• Control variable P5, initiates the logic OR operation between Ai and Bi The

result is transferred to Ai.

• The excitation table for this operation is as shown below.

Present State Input Next State Flip-flop Inputs

Ai Bi Ai JAi KAi

0 0 0 0 X

0 1 1 1 X

1 0 1 X 0

1 1 1 X 0

• The simplified equations in the maps dictate that the J input be enabled

when Bi =1. When Bi=0, the present state and next state of Ai are the same.

• When Bi=1, the J input is enabled and the next state of Ai, becomes 1.

Input functions for the OR micro operation are:

JAi =BiP5

KAi =0

6. Exclusive-OR (P6)

• Control variable P6 initiates the logic Exclusive-OR operation between Ai

and Bi. The result is transferred to Ai.

• The excitation table and map simplification is as shown below.

• The flip flop input functions are written as:

JAi =BiP6

KAi = BiP6

7. Shift-right (P7)

• Control variable P7 initiates the shift operation of Ai register one bit to the

right. That is the value of flip flop Ai+1 is transferred to flip flop Ai.

• The flip flop input functions can be written as:

JAi = Ai+1 P7

KAi = Ai+1 P7

8. Shift-left (P8)

• Control variable P8 initiates the shift operation of Ai register one bit to the

left. That is, the value of flip flop Ai-1 is transferred to flip flop Ai .

• The flip flop input functions can be written as:

• JAi = Ai-1 P8

• KAi = Ai-1 P8

9. Increment (P9)

• These operations increment the content of A register by one. The register

behaves likes a synchronous binary counter with P9 enabling the count.

• A 3 bit synchronous counter is shown in the following figure.

• The Boolean function for a typical stage can be written as:

10. Check for Zero (Z)

• Variable Z is an output from the accumulator. This variable can be used to

indicate a zero content in the A register.

• All the flip flops in the accumulator is cleared Z variable will be set to 1.

When a flip flop is cleared, its complement output Q' is equal to 1.

• The following figure shows the first three stages of the accumulator that

checks for zero content.

• Each stage generates a variable Zi+1 by ANDing the complement output of

Ai to an input variable Zi. In this way, a chain of AND gates through all

stages will indicate if all flips ate cleared.

• The Boolean function for a typical stage can be expressed as:

Zi+1 = ZiAi i=1,2,3…………………n

Z1=1

Zn+1=Z

One stage of Accumulator

• Combining all the input functions for the J and K inputs flip flop A1

produces a composite set of input Boolean functions for a typical stage.

• Each stage in the accumulator must produce the carry for the next stage.

• The logic diagram for one typical stage of the Accumulator is shown

below:

Complete Accumulator

• For a complete accumulator there will be n stages like this. The inputs and

outputs of each stage can he connected in cascade to form a complete

accumulator.

PREVIOUS YEAR UNIVERSITY QUESTION

