
Module: 3

ARITHMETIC ALGORITHMS - Algorithms for multiplication and division

(restoring method) of binary numbers — Array multiplier —Booth’s

multiplication algorithm

Pipelining – Basic Principles, classification of pipeline processors.

instruction and arithmetic pipelines (Design examples not required),

hazard detection and resolution.

MULTIPLICATION OF UNSIGNED NUMBERS

Product of 2 n bit numbers is atmost 2n bit number. Unsigned multiplication can be

viewed as addition of shifted versions of the multiplicand. Multiplication involves the generation

of partial products, one for each digit in the multiplier. These partial products are then summed to

produce the final product. When the multiplier bit is 0, the partial product is 0. When the

multiplier is 1 the partial product is the multiplicand. The total product is produced by summing

the partial products. For this operation, each successive partial product is shifted one position to

the left relative to the preceding partial product.

Multiplication of two integer numbers 13 and 11 is,

Array Multiplier

Binary multiplication can be implemented in a combinational two-dimensional logic array

called array multiplier.

 The main component in each in each cell is a full adder, FA.

 The AND gate in each cell determines whether a multiplicand bit mj, is added to the

incoming partial product bit based on the value of the multiplier bit, qi.

 Each row i, where 0<= i <=3, adds the multiplicand (appropriately shifted) to the

incoming parcel product, PPi, to generate the outgoing partial product, PP(i+1), if

qi.=1.

 If qi.=0, PPi is passed vertically downward unchanged. PP0 is all 0’s and PP4 is the

desired product. The multiplication is shifted left one position per row by the diagonal

signal path.

(a)Array multiplication of positive binary operands (b) Multiplier cell

Disadvantages:

(1) An n bit by n bit array multiplier requires n
2
 AND gates and n(n-2) full adders and n

half adders.(Half aders are used if there are 2 inputs and full adder used if there are 3

inputs).

(2) The longest part of input to output through n adders in top row, n -1 adders in the

bottom row and n-3 adders in middle row. The longest in a circuit is called critical

path.

Sequential Circuit Multiplier

Multiplication is performed as a series of (n) conditional addition and shift operation such

that if the given bit of the multiplier is 0 then only a shift operation is performed, while if the

given bit of the multiplier is 1 then addition of the partial products and a shift operation are

performed.

The combinational array multiplier uses a large number of logic gates for multiplying

numbers. Multiplication of two n-bit numbers can also be performed in a sequential circuit that

uses a single n bit adder.

 The block diagram in Figure shows the hardware arrangement for sequential

multiplication. This circuit performs multiplication by using single n-bit adder n times to

implement the spatial addition performed by the n rows of ripple-carry adders in Figure. Registers

A and Q are shift registers, concatenated as shown. Together, they hold partial product PPi while

multiplier bit qi generates the signal Add/Noadd. This signal causes the multiplexer MUX to

select 0 when qi = 0, or to select the multiplicand M when qi = 1, to be added to PPi to generate

PP(i + 1). The product is computed in n cycles. The partial product grows in length by one bit per

cycle from the initial vector, PP0, of n 0s in register A. The carryout from the adder is stored in

flipflop C, shown at the left end of the register C.

Algorithm:

(1) The multiplier and multiplicand are loaded into two registers Q and M. Third register

A and C are cleared to 0.

(2) In each cycle it performs 2 steps:

(a) If LSB of the multiplier qi =1, control sequencer generates Add signal which

adds the multiplicand M with the register A and the result is stored in A.

(b) If qi =0, it generates Noadd signal to restore the previous value in register A.

(3) Right shift the registers C, A and Q by 1 bit

 MULTIPLICATION OF SIGNED NUMBERS

We now discuss multiplication of 2’s-complement operands, generating a double-length

product. The general strategy is still to accumulate partial products by adding versions of the

multiplicand as selected by the multiplier bits.

First, consider the case of a positive multiplier and a negative multiplicand. When we

add a negative multiplicand to a partial product, we must extend the sign-bit value of the

multiplicand to the left as far as the product will extend. Figure shows an example in which a 5-

bit signed operand, −13, is the multiplicand. It is multiplied by +11 to get the 10-bit product,

−143. The sign extension of the multiplicand is shown in blue. The hardware discussed earlier

can be used for negative multiplicands if it is augmented to provide for sign extension of the

partial products.

 13 –> 1101

+13 -> 01101 [for +ve number, add 0 to MSB]

-13 -> 10010 + [for –ve number, find 2’s complement]

 1

 10011 -> -13

[To extend the sign bit - since its 5 bit signed operand, 10 bit product should be generated.

So, if the partial product’s MSB is 1, add 1 for sign extension (to left),

 if the partial product’s MSB is 0, add 0 for sign extension (to left)]

Example: Sign extension of negative multiplicand

 [product is10 bits ->(2n)]

For a negative multiplier, a straightforward solution is to form the 2’s-complement of

both the multiplier and the multiplicand and proceed as in the case of a positive multiplier.

This is possible because complementation of both operands does not change the value or the sign

of the product.

[If the sign bit is 0 then the number is positive, If the sign bit is 1, then the number is negative]

The Booth Algorithm

Algorithm & Flowchart for Booth Multiplication

1. Multiplicand is placed in BR and Multiplier in QR

2. Accumulator register AC, Qn+1 are initialized to 0

3. Sequence counter SC is initialized to n (number of

bits).

4. Compare Qn and Qn+1 and perform the following

 01 –> AC=AC+BR

 10 –> AC=AC+BR’+1

 00 –> No arithmetic operation

 11-> No arithmetic operation

5. ASHR- Arithmetic Shift right AC,QR

6. Decrement SC by 1

The final product will be store in AC, QR

Multiply -9 x -13 using Booth Algorithm

9 = 1001 13 = 1101 BR= 10111

+9 = 01001 +13 = 01101 BR’+1= 01000+

-9 = 10110+ -13 = 100010+ 1

 1 1 --------------

------------------ ------------------- 01001 (BR’+1)

 10111 (BR) 10011 (Q)

 Resultant Product in A and Q = 00011 10101

 = 2
6
+2

5
+2

4
+2

2
+2

0

 = 117

 ==============

Qn Qn+1

BR=10111
AC Q Qn+1 SC

BR'+1=01001

Initial 00000 10011 0 101

1 0
SUB

00000+

01001

01001 10011 0 101

ASHR 00100 11001 1 100

1 1 ASHR 00010 01100 1 011

0 1
ADD

00010+

10111

11001 01100 1 011

ASHR 11100 10110 0 010

0 0 ASHR 11110 01011 0 001

1 0
SUB

11110

01001

00111 01011 0 001

ASHR 00011 10101 1 000

Multiply 13 x -6 using Booth Algorithm

13 = 1101 6 = 0110 BR= 01101

+13 = 01101 (BR) +6 = 00110 BR’+1= 10010+

 -6 = 11001+ 1

 1 --------------

 -------------- 10011 (BR’+1)

 11010 (Q)

[13x-6 will give a –ve product. so the resultant product’s 2’s compliment should be

determined]

Resultant Product in A and Q = 11101 10010

 2’s complement = 00010 01101+

 1

 0001001110

 =2
6
+2

3
+2

2
+2

1

 . = -78

 ==================

Qn Qn+1
BR=01101

AC Q Qn+1 SC
BR'+1=10011

 Initial 00000 11010 0 101

0 0 ASHR 00000 01101 0 100

1 0
SUB

00000+

10011

10011 01101 0 100

ASHR 11001 10110 1 011

 0 1
ADD

 11001+

 01101

00110 10110 1 011

 ASHR 00011 01011 0 010

 1 0
SUB

00011

10011

10110 01011 0 010

ASHR 11011 00101 1 001

1 1 ASHR 11101 10010 1 000

Multiply -11 x 8 using Booth Algorithm

11 = 1011 8 = 1000 BR= 10101

+11 = 01011 +8 = 01000 (Q) BR’+1= 01010+

-11 = 10100+ - 1

 1 --------------

------------------ 01011 (BR’+1)

 10101 (BR)

[-11x8 will give a –ve product. so the resultant product’s 2’s compliment should be

determined]

Resultant Product in A and Q = 11101 01000

 2’s complement = 00010 10111+

 1

 0001011000

 =2
6
+2

4
+2

3

 = -88

 =========

Qn Qn+1
BR=10101

AC Q Qn+1 SC
BR'+1=01011

 Initial 00000 01000 0 101

0 0 ASHR 00000 00100 0 100

0 0 ASHR 00000 00010 0 011

0 0 ASHR 00000 00001 0 010

 1 0
SUB

 00000+

 01011

01011 00001 0 010

 ASHR 00101 10000 1 001

 0 1
ADD

00101

10101

11010 10000 1 010

ASHR 11101 01000 0 000

Multiply each of the following pairs of signed 2’s complement number using Booth’s

algorithm. In each of the cases assume A is the multiplicand and B is the multiplier.

A=010111 B=110110

Answer:

A=010111 B=110110

[sign bit is 0, therefore +ve number] [sign bit is 1, therefore -ve number]

 Find 2’s complement.

 A=23 [10111] 2’s complement of 10110 is 01001+ 1

 = 01010 => 10

Therefore, A=+23 [010111] Therefore, B= -10 [110110]

Multiply +23 x -10

 BR= 010111

+23 = 010111 (BR) BR’+1= 101000+

-10 = 110110 (Q) 1

 101001 (BR’+1)

[+23x-10 will give a –ve product. so the resultant product’s 2’s compliment should be

determined]

Qn Qn+1
BR=010111

AC Q Qn+1 SC
BR'+1=101001

 Initial 000000 110110 0 0110

0 0 ASHR 000000 011011 0 0101

 1 0
SUB

 000000+

 101001

101001 011011 0 0101

 ASHR 110100 101101 1 0100

1 1 ASHR 111010 010110 1 0011

 0 1
ADD

111010+

010111

010001 010110 1 0011

ASHR 001000 101011 0 0010

1 0 SUB

001000+

101001

110001 101011 0 0010

 ASHR 111000 110101 1 0001

1 1 ASHR 111100 011010 1 0000

Resultant Product in A and Q = 111100 011010

 2’s complement = 000011 100101+

 1

 000011100110

 =2
7
 +2

6
+2

5
+2

2
+ 2

1

 = -230

 =============

Features of Booth Algorithm:

 Booth algorithm works equally well for both negative and positive multipliers.

 Booth algorithm deals with signed multiplication of given number.

 Speed up the multiplication process.

Booth Recording of a Multiplier:

In general, in the Booth algorithm, −1 times the shifted multiplicand is selected when moving

from 0 to 1, and +1 times the shifted multiplicand is selected when moving from1 to 0, as the

multiplier is scanned from right to left. The case when the LSB of the multiplier is 1, it is

handled by assuming that an implied 0 lies to its right.

 In worst case multiplier, numbers of addition and subtraction operations are large.

 In ordinary multiplier, 0 indicates no operation, but still there are addition and

subtraction operations to be performed.

 In good multiplier, booth algorithm works well because majority are 0s .

 A good multiplier consists of block/sequence of 1s.

Booth algorithm achieves efficiency in the number of additions required when the multiplier had

a few large blocks of 1s. The speed gained by skipping over 1s depends on the data. On average,

the speed of doing multiplication with the booth algorithm is the same as with the normal

multiplication

• Best case – a long string of 1’s (skipping over 1s)

• Worst case – 0’s and 1’s are alternating

• The transformation 011….110 to 100….0-10 is called skipping over 1s.

INTEGER DIVISION

Figure shows examples of decimal division and binary division of the same values.

Consider the decimal version first. The 2 in the quotient is determined by the following

reasoning: First, we try to divide 13 into 2, and it does not work. Next, we try to divide 13into 27.

We go through the trial exercise of multiplying 13 by 2 to get 26, and, observing that 27 − 26 = 1

is less than 13, we enter 2 as the quotient and perform the required subtraction.

Dividend = 274

Divisor = 13

Quotient=21

Remainder =1

The next digit of the dividend, 4, is brought down, and we finish by deciding that 13 goes

into 14 once and the remainder is 1. We can discuss binary division in a similar way, with the

simplification that the only possibilities for the quotient bits are 0 and 1.

A circuit that implements division by this longhand method operates as follows: It

positions the divisor appropriately with respect to the dividend and performs a subtraction. If the

remainder is zero or positive, a quotient bit of 1 is determined, the remainder is extended by

another bit of the dividend, the divisor is repositioned, and another subtraction is performed.

If the remainder is negative, a quotient bit of 0 is determined, the dividend is restored by

adding back the divisor, and the divisor is repositioned for another subtraction. This is called the

restoring division algorithm.

Restoring Division

Figure shows a logic circuit arrangement that implements the restoring division algorithm

just discussed. An n-bit positive divisor is loaded into register M and an n-bit positive dividend

is loaded into register Q at the start of the operation. Register A is set to 0. After the division is

complete, the n-bit quotient is in register Q and the remainder is in register A.

The required subtractions are facilitated by using 2’s-complement arithmetic. The extra

bit position at the left end of both A and M accommodates the sign bit during subtractions. The

following algorithm performs restoring division.

Do the following three steps n times:

1. Shift A and Q left one bit position.

2. Subtract M from A, ie; (A-M) and place the answer back in A.

3. If the sign of A is 1, set q0 to 0 and add M back to A (that is, restore A); otherwise, set

q0 to 1.

 M = 00011

 M’+1 = 11100+1

 = 11101

Dividend=8 [1000], Divisor=3 [11]

Quotient=2 [0010], Remainder=2 [00010]

PIPELINING

Pipelining is a technique of decomposing a sequential process into sub operations, with each

sub process being executed in a special dedicated segment that operates concurrently with

all other segments. A pipeline can be visualized as a collection of processing segments

through which binary information flows. Each segment performs partial processing dictated

by the way the task is partitioned. The result obtained from the computation in each segment

is transferred to the next segment in the pipeline. The final result is obtained after the data

have passed through all segments.

A pipeline processor may process each instruction in 4 steps:

F Fetch: Read the instruction from the memory

D Decode: Decode the instruction and fetch the source operands

E Execute: Perform the operation specified by the instruction

W Write: Store the result in the destination location.

In figure (a) four instructions progress at any given time. This means that four distinct

hardware units are needed as in figure (b). These units must be capable of performing their

tasks simultaneously without interfering with one another. Information is passed from one

unit to next through a storage buffer. As an instruction progresses through the pipeline. all

the information needed by the stages downstream must be passed along.

 Pipeline Organization

The simplest way of viewing the pipeline structure is to imagine that each segment

consists of an input register followed by a combinational circuit. The register holds the data

and the combinational circuit performs the sub operation in the particular segment. The

output of the combinational circuit is applied to the input register of the next segment. A

clock is applied to all registers after enough time has elapsed to perform all segment

activity. In this way the information flows through the pipeline one step at a time. Example

demonstrating the pipeline organization

Suppose we want to perform the combined multiply

and add operations with a stream of numbers.

Ai*Bi + Ci for i=1, 2, 3 ….7

Each sub operation is to implemented in a segment

within a pipeline. Each segment has one or two

registers and a combinational circuit as shown in fig.

R1 through r5 are registers that receive new data

with every clock pulse.

The multiplier and adder are combinational circuits.

The sub operations performed in each segment of the

pipeline are as follows:

R1<- Ai R2<-Bi Input Ai and Bi

R3<-R1*R2

R5<-R3+R4

R4<-Ci multiply and input Ci

add Ci to product

The five registers are loaded with new data every clock pulse.

The first clock pulse transfers A1 and B1 into R1 and R2. The second clock pulse

transfers the product of R1 and R2 into R3 and C1 into R4. The same clock pulse transfers

A2 and B2 into R1 and R2. The third clock pulse operates on all three segments

simultaneously. It places A3 and B3 into R1 and R2, transfers the product of R1 and R2 into

R3, transfers C2 into R4, and places the sum of R3 and R4 into R5. It takes three clock

pulses to fill up the pipe and retrieve the first output from R5. From there on, each clock

produces a new output and moves the data one step down the pipeline. This happens as long

as new input data flow into the system.

 Four Segment Pipeline

The general structure of four segment pipeline is shown in fig. the operands are passed

through all four segments in affixed sequence. Each segment consists of a combinational

circuit Si that performs a sub operation over the data stream flowing through the pipe. The

segments are separated by registers Ri that hold the intermediate results between the stages.

Information flows between adjacent stages under the control of a common clock applied to

all the registers simultaneously.

Space Time Diagram

The behavior of a pipeline can be illustrated with a space time diagram. This is a diagram

that shows the segment utilization as a function of time.

Fig - The horizontal axis displays the time in clock cycles and the vertical axis gives the

segment number. The diagram shows six tasks T1 through T6 executed in four segments.

Initially, task T1 is handled by segment 1. After the first clock, segment 2 is busy with T1,

while segment 1 is busy with task T2. Continuing in this manner, the first task T1 is

completed after fourth clock cycle. From then , the pipe completes a task every clock cycle.

KTU - CST202 - Computer Organization and Architecture Module: 3

16

Consider the case where a k-segment pipeline with a clock cycle time tp is used to

execute n tasks. The first task T1 requires a time equal to ktp to complete its operation since

there are k segments in a pipe. The remaining n-1 tasks emerge from the pipe at the rate of

one task per clock cycle and they will be completed after a time equal to (n-1) tp. Therefore,

to complete n tasks using a k segment pipeline requires k+ (n-1) clock cycles.

Consider a non pipeline unit that performs the same operation and takes a time equal to

tn to complete each task. The total time required for n tasks is n tn. The speedup of a pipeline

processing over an equivalent non pipeline processing is defined by the ratio

S=ntn / (k+n-1)tp

As the number of tasks increases, n becomes much larger than k-1, and k+n-1 approaches the

value of n. under this condition the speed up ratio becomes

S=tn/tp

If we assume that the time it takes to process a task is the same in the pipeline and non

pipeline circuits, we will have tn=ktp. Including this assumption speed up ratio reduces to

S=ktp/tp=k

CLASSIFICATION OF PIPELINE PROCESSORS

1. Arithmetic Pipelining: The arithmetic logic units of a computer can be segmented for

pipeline operations in various data formats.

2. Instruction Pipelining: The execution of stream of instructions can be pipelined by

overlapping the execution of current instruction with the fetch, decode and execution of

subsequent instructions. This technique is known as instruction lookahead.

KTU - CST202 - Computer Organization and Architecture Module: 3

17

3. Processor Pipelining: Pipeline processing of the same data stream by a cascade of

processors, each of which processes a specific task. The data stream passes the first

processor with the results stored in memory block which is also accessible by the second

processor. The second processor then passes the refined results to the third and so on.

ARITHMETIC PIPELINES

An arithmetic pipeline divides an arithmetic operation into sub operations for

execution in the pipeline segments. Pipeline arithmetic units are usually found in very high

speed computers. They are used to implement floating point operations, multiplication of

fixed point numbers, and similar computations encountered in scientific problems.

KTU - CST202 - Computer Organization and Architecture Module: 3

18

 Pipeline Unit For Floating Point Addition And Subtraction:

The inputs to the floating point adder pipeline are two normalized floating point

binary numbers. X=A *2
a

, Y=B*2
b

A and B are two fractions that represent the mantissa and a and bare the exponents. The

floating point addition and subtraction can be performed in four segments. The registers

labeled are placed between the segments to store intermediate results. The sub operations

that are performed in the four segments are:

1. Compare the exponents

2. Align the mantissa.

3. Add or subtract the mantissas.

4. Normalize the result.

KTU - CST202 - Computer Organization and Architecture Module: 3

19

The exponents are compared by subtracting them to determine their difference. The

larger exponent is chosen as the exponent of the result. The exponent difference determines

how many times the mantissa associated with the smaller exponent must be shifted to the

right. This produces an alignment of the two mantissas.

The two mantissas are added or subtracted in segment3. The result is normalized in

segment 4. When an overflow occurs, the mantissa of the sum or difference is shifted to right

and the exponent incremented by one. If the underflow occurs, the number of leading zeroes

in the mantissa determines the number of left shifts in the mantissa and the number that must

be subtracted from the exponent.

[Overflow – When the result of an Arithmetic operation is finite but larger in magnitude than

the largest floating point which can be stored by the precision, Underflow – When the result

of an Arithmetic operation is smaller in magnitude than the smallest floating point which can

be stored]

 INSTRUCTION PIPELINE

An instruction pipeline operates on a stream of instructions by overlapping the

fetch, decode, and execute phases of instruction cycle. An instruction pipeline reads

consecutive instructions from memory while previous instructions are being executed in

other segments. This causes the instruction fetch and executes phases to overlap and perform

simultaneous operations.

Consider a computer with an instruction fetch unit and an instruction execute unit

designed to provide a two segment pipeline. The instruction fetch segment can be

implemented by means of a first in first out (FIFO) buffer. Whenever the execution unit is

not using memory, the control increments the program counter and uses it address value to

read consecutive instructions from memory. The instructions are inserted into the FIFO buffer

so that they can be executed on a first in first out basis. Thus an instruction stream can be

placed in queue, waiting for decoding and processing by the execution segment.

KTU - CST202 - Computer Organization and Architecture Module: 3

20

Four Segment Instruction Pipeline

In general the computer needs to process each instruction with the following sequence of

steps. (6 steps in 4 segments)

KTU - CST202 - Computer Organization and Architecture Module: 3

Fig shows the operation of the instruction pipeline. The clock in the horizontal axis is

divided into steps of equal duration. The four segments are represented in the diagram with

an abbreviated symbol.

1. FI is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the effective address.

3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

Here the instruction is fetched (FI) on first clock cycle in segment 1.

it is decoded (DA) on second clock cycle , the operands are fetched (FO) on third clock

cycle and finally the instruction is executed (EX) in the fourth cycle. Here the fetch and

decode phase overlap due to pipelining. By the time the first instruction is being decoded,

next instruction is fetched by the pipeline.

In case of third instruction we see that it is a branched instruction. Here when it is being

decoded, 4th instruction is fetched simultaneously. But as it is a branched instruction it may

point to some other instruction when it is decoded. Thus fourth instruction is kept on hold

until the branched instruction is executed. When it gets executed then the fourth instruction is

KTU - CST202 - Computer Organization and Architecture Module: 3

copied back and the other phases continue as usual. In the absence of a branch instruction,

each segment operates on different instructions.

PIPELINE CONFLICTS:

1. Resource Conflicts: They are caused by access to memory by two segments at the

same time. Most of these conflicts can be resolved by using separate instruction and

data memories.

2. Data Dependency: these conflicts arise when an instruction depends on the result of

a previous instruction, but this result is not yet available.

3. Branch Difference: they arise from branch and other instructions that change the

value of PC.

PIPELINE HAZARDS DETECTION AND RESOLUTION

Pipeline hazards are caused by resource usage conflicts among various instructions in the

pipeline. Such hazards are triggered by inter instruction dependencies when successive

instructions overlap their fetch, decode and execution through a pipeline processor, inter

instruction dependencies may arise to prevent the sequential data flow in the pipeline.

For example an instruction may depend on the results of a previous instruction. Until the

completion of the previous instruction, the present instruction cannot be initiated into the

pipeline. In other instances, two stages of a pipeline may need to update the same memory

location. Hazards of this sort, if not properly detected and resolved could result in an inter

lock situation in the pipeline or produce unreliable results by overwriting.

There are three classes of data dependent hazards, according to various data update

patterns:

1. Write After Read hazards (WAR)

2. Read After Write hazards (RAW)

3. Write After Write hazards (WAW)

 Note that Read After Read does not pose a problem because nothing is changed.

KTU - CST202 - Computer Organization and Architecture Module: 3

We use resource object to refer to working registers, memory locations and special flags. The

contents of these resource objects are called data objects. Each instruction can be considered

a mapping from a set of data objects to a set of data objects. The domain D(I) of an

instruction I is a set of resource objects whose data objects may affect the execution of

instruction I. The range of an instruction R(I) is the set of resource objects whose data objects

may be modified by the execution of instruction I. Obviously, the operands to be used in an

instruction execution are retrieved (read) from its domain and the results will be stored

(written) in its range.

 Consider the execution of two instructions I and J in a program. Instruction J appears after

instruction I in the program. There may be none or other instructions between instruction I

and J. The latency between the two instructions is a very subtitle matter. Instruction J may

enter the execution pipe before or after the completion of the execution of instruction l. The

improper timing and the data dependencies may create some other hazardous situations.

1. RAW hazard between the two instructions I and J may occur when they attempt to

read some data object that has been modified by I.

2. WAR hazard may occur when J attempt to modify some data object that is read by I.

3. WAW hazard may occur if both I and J attempt to modify the same data object.

The necessary conditions for these hazards are stated as follows:

Possible hazards are listed in table. Recognizing the existence of possible hazards, computer

designers wish to detect the hazard and then to resolve it efficiently. Hazard detection can be

done in the instruction fetch stage of a pipeline processor by comparing the domain and the

range of incoming instruction with those of the instructions being processed in the pipe.

Should any of the condition in equation 3.18 be detected, a warning signal can be generated

to prevent the hazard from taking place. Another approach is to allow the incoming

instruction through the pipe and distribute the detection to all the potential pipeline stages.

KTU - CST202 - Computer Organization and Architecture Module: 3

This distributed approach offers better flexibility at the expense of increased hardware

control. Note that the necessary conditions in the equation 3.18 may not be sufficient

conditions.

Once the hazard is detected, the system should resolve the interlock situation. Consider the

instruction sequence {.. I, I+1,....J, J+1,...} in which a hazard has been detected between the

KTU - CST202 - Computer Organization and Architecture Module: 3

current instructions J and a previous instruction I. A straightforward approach is to stop the

pipe and to suspend the execution of the instructions J, J+ 1, J+2....until instruction I has

passed the point of resource conflict. A more sophisticated approach is to suspend only

instruction J and continue the flow of instructions is J+1, J+2,... down the pipe. Of course,

the potential hazards due to the suspension of J should be continuously checked as

instructions J+1, J+2 to move ahead of J. Multi level hazard detection may be encountered,

requiring more complex control mechanisms to resolve a stack of hazards

In order to avoid RAW hazards, IBM engineers developed a short circuiting approach

which gives a copy of the data object to be written directly to the instruction waiting to read

the data. This concept was generalized into a technique known as data forwarding, which

forward multiple copies of the data to as many waiting instructions as may wish to read it. A

data forwarding chain can be established in some cases. The internal forwarding and register-

tagging techniques are helpful in resolving logic hazards in pipelines.

