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Day 1 

Definitions 

Todd D. Morton 

Embedded Systems are the electronic systems that contain a microprocessor or a 

microcontroller, but we do not think of them as computers – the computer is hidden or embedded 

in the system. 

Wayne Wolf 

Embedded System is any device that includes a programmable computer but is not itself intended 

to be a general purpose computer.  

Raj Kamal 

An embedded system is a system that has software embedded into computer-hardware, which 

makes a system dedicated for an application(s) or specific part of an application or product or part 

of a larger system. 

Components of Embedded Systems 

Three main components of an Embedded System are as follows 

1. Embeds hardware to give computer like functionalities  

2. Embeds main application software generally into flash or ROM and the application software 

performs concurrently the number of tasks. 

3. Embeds a real time operating system (RTOS), which supervises the application software tasks 

running on the hardware and organizes the accesses to system resources according to priorities and 

timing constraints of tasks in the system. 

Embedded Computers 

Whirlwind 

 First computer designed to support real-time operation  

 Conceived as a mechanism for controlling an aircraft simulator. 
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 Extremely large physically(4000 vacuum tubes) 

 

Intel 4004 

 

 First microprocessor designed for an embedded application, namely, a calculator. 

 The calculator was not a general-purpose computer - it merely provided basic arithmetic 

functions. 

HP-35 

 First handheld calculator to perform transcendental functions 

 Used several chips to implement the CPU, rather than a single-chip microprocessor. 

 The ability to write programs to perform math rather than having to design digital circuits 

to perform operations like trigonometric functions was critical to the successful design of 

the calculator. 

 

Microprocessors come in many different levels of sophistication.  

 An 8-bit microcontroller is designed for low-cost applications and includes on-board 

memory and I/O devices. 

 A 16-bit microcontroller is often used for more sophisticated applications that may 

require either longer word lengths or off-chip I/O and memory. 

 A 32-bit RISC microprocessor offers very high performance for computation-intensive 

applications. 

 

Examples of Embedded Systems 

 

1. PDA or Palmtop (Personal Digital Assistance):- Uses 32-bit microcontrollers.  

2. Cell phone: - Uses a 32-bit microcontroller.  

3. Household appliance:- 

 For example, front panel of microwave oven that also uses a microcontroller, but typically 

it will have its word size much smaller than that of the earlier examples; because the functionality 

that it handles is much less.  
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4. Camera: - Uses a 32-bit processor because it handles complex functions. Similarly, in an analog 

to be a 5. Digital TV: - Uses a 32-bit processor because in an analog TV, the microcontroller 

handles primarily the problem of tuning and channel selection. But in a digital TV, decompression, 

disk family and particularly on the set top box, your microcontroller handles a number of complex 

functions. 

5. Antilock Braking System: - reduces skidding by pumping the brakes. 

 

 

The purpose of an ABS is to temporarily release the brake on a wheel when it rotates too slowly 

when a wheel stops turning, the car starts skidding and becomes hard to control. It sits between 

the hydraulic pump, which provides power to the brakes, and the brakes themselves as seen in the 

following diagram. This hookup allows the ABS system to modulate the brakes in order to keep 

the wheels from locking. The ABS system uses sensors on each wheel to measure the speed of the 

wheel. The wheel speeds are used by the ABS system to determine how to vary the hydraulic fluid 

pressure to prevent the wheels from skidding. 

Day 2 

Characteristics of Embedded Systems 

1. Provide sophisticated (complex) functionality 

 Complex algorithms: The operations performed by the microprocessor may be very 

sophisticated. For example, the microprocessor that controls an automobile engine must 

perform complicated filtering functions to optimize the performance of the car while 

minimizing pollution and fuel utilization. 
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 User interface: Microprocessors are frequently used to control complex user interfaces that 

may include multiple menus and many options. The moving maps in Global Positioning 

System (GPS) navigation are good examples of sophisticated user interfaces. 

2. Real Time Operation 

 Real time: Many embedded computing systems have to perform in real time - if the data is 

not ready by a certain deadline, the system breaks. In some cases, failure to meet a deadline 

is unsafe and can even endanger lives. In other cases, missing a deadline does not create 

safety problems but does create unhappy customers—missed deadlines in printers, for 

example, can result in scrambled pages. 

 Multirate: Not only must operations be completed by deadlines, but many embedded 

computing systems have several real-time activities going on at the same time. They may 

simultaneously control some operations that run at slow rates and others that run at high 

rates. Multimedia applications are prime examples of multirate behavior. The audio and 

video portions of a multimedia stream run at very different rates, but they must remain 

closely synchronized. Failure to meet a deadline on either the audio or video portions spoils 

the perception of the entire presentation. 

3. Cost of various sort 

 Manufacturing cost: The total cost of building the system is very important in many cases. 

Manufacturing cost is determined by many factors, including the type of microprocessor 

used, the amount of memory required, and the types of I/O devices. 

 Power and energy: Power consumption directly affects the cost of the hardware, since a 

larger power supply may be necessary. Energy consumption affects battery life, which is 

important in many applications, as well as heat consumption, which can be important even 

in desktop applications. 

Challenges in Embedded Computing System Design 

 

1. How much hardware do we need? 

We cannot only select the type of microprocessor used, but also select the amount of 

memory, the peripheral devices, and more. Since we often must meet both performance 

deadlines and manufacturing cost constraints, the choice of hardware is important - too little 
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hardware and the system fails to meet its deadlines, too much hardware and it becomes too 

expensive. 

2. How do we meet deadlines? 

The brute force way of meeting a deadline is to speed up the hardware so that the program 

runs faster. Of course, that makes the system more expensive. It is also entirely possible that 

increasing the CPU clock rate may not make enough difference to execution time, since the 

program’s speed may be limited by the memory system. 

3. How do we minimize power consumption? 

In battery-powered applications, power consumption is extremely important. Even in non-

battery applications, excessive power consumption can increase heat dissipation. One way to make 

a digital system consume less power is to make it run more slowly, but naively slowing down 

the system can obviously lead to missed deadlines. Careful design is required to slow down the 

non-critical parts of the machine for power consumption while still meeting necessary performance 

goals. 

4. How do we design for upgradability? 

The hardware platform may be used over several product generations, or for several 

different versions of a product in the same generation, with few or no changes. However, we 

want to be able to add features by changing software.  

5. Does it really work? 

Reliability is always important when selling products. Customers rightly expect that 

products they buy will work. If we wait until we have a running system and try to eliminate the 

bugs, it will be too expensive to fix them, and it will take too long as well.  

Let’s consider some ways in which the nature of embedded computing machines makes 

their design more difficult. 

 Complex testing: Exercising an embedded system is generally more difficult than typing in 

some data. We may have to run a real machine in order to generate the proper data. The timing 

of data is often important, meaning that we cannot separate the testing of an embedded 

computer from the machine in which it is embedded. 

 Limited observability and controllability: Embedded computing systems usually do not come 

with keyboards and screens. This makes it more difficult to see what is going on and to affect 
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the system’s operation. Moreover, in real-time applications we may not be able to easily stop 

the system to see what is going on inside. 

 Restricted development environments: The development environments for embedded systems 

(the tools used to develop software and hardware) are often much more limited than those 

available for PCs and workstations. We generally compile code on one type of machine, such 

as a PC, and download it onto the embedded system. To debug the code, we must usually rely 

on programs that run on the PC or workstation and then look inside the embedded system. 

 

Performance in Embedded Computing 

Embedded system designers have a very clear performance goal in mind—their program 

must meet its deadline. Embedded computing is real-time computing, which is the science and art 

of programming to deadlines. The program receives its input data; the deadline is the time at which 

a computation must be finished. If the program does not produce the required output by the 

deadline, then the program does not work, even if the output that it eventually produces is 

functionally correct. 

In order to understand the real-time behavior of an embedded computing system, we have to 

analyze the system at several different levels of abstraction. Those layers include: 

 CPU: The CPU clearly influences the behavior of the program, particularly when the CPU 

is a pipelined processor with a cache.  

 Platform: The platform includes the bus and I/O devices. The platform components that 

surround the CPU are responsible for feeding the CPU and can dramatically affect its 

performance. 

 Program: Programs are very large and the CPU sees only a small window of the program 

at a time. We must consider the structure of the entire program to determine its overall 

behavior. 

 Task: We generally run several programs simultaneously on a CPU, creating a 

multitasking system. The tasks interact with each other in ways that have profound 

implications for performance. 

 Multiprocessor: Many embedded systems have more than one processor— they may 

include multiple programmable CPUs as well as accelerators. Once again, the interaction 
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between these processors adds yet more complexity to the analysis of overall system 

performance. 

Day 3 

THE EMBEDDED SYSTEM DESIGN PROCESS 

 

Figure: Major level of abstraction in the design process 

In the top–down view, we start with the system requirements. In the next step, 

specification, we create a more detailed description of what we want. But the specification states 

only how the system behaves, not how it is built. The details of the system’s internals begin to take 

shape when we develop the architecture, which gives the system structure in terms of large 

components. Once we know the components we need, we can design those components, including 

both software modules and any specialized hardware we need. Based on those components, we 

can finally build a complete system. 

The alternative is a bottom–up view in which we start with components to build a system. 

Bottom–up design steps are shown in the figure as dashed-line arrows. We need bottom–up design 
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because we do not have perfect insight into how later stages of the design process will turn out. 

Decisions at one stage of design are based upon estimates of what will happen later. 

Major goals of the design are as follows: 

 Manufacturing cost. 

 Performance (both overall speed and deadlines). 

 Power consumption. 

At each step in the design, we add detail: 

 Analyze the design at each step to determine how we can meet the specifications. 

 Refine the design to add detail. 

 Verify the design to ensure that it still meets all system goals, such as cost, speed, and so 

on. 

Requirements 

The initial stages of the design process capture this information for use in creating the 

architecture and components. We generally proceed in two phases: First, we gather an informal 

description from the customers known as requirements, and we refine the requirements into a 

specification that contains enough information to begin designing the system architecture. 

Separating out requirements analysis and specification is often necessary because of the 

large gap between what the customers can describe about the system they want and what the 

architects need to design the system. 

Capturing a consistent set of requirements from the customer and then massaging those 

requirements into a more formal specification is a structured way to manage the process of 

translating from the consumer’s language to the designer’s. 

Requirements may be functional or nonfunctional. We must of course capture the basic 

functions of the embedded system, but functional description is often not sufficient. Typical 

nonfunctional requirements include: 

 Performance: The speed of the system is often a major consideration both for the usability 

of the system and for its ultimate cost.  

 Cost: The target cost or purchase price for the system is almost always a consideration. 

Cost typically has two major components: manufacturing cost includes the cost of 

components and assembly; nonrecurring engineering (NRE) costs include the personnel 

and other costs of designing the system. 
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 Physical size and weight: The physical aspects of the final system can vary greatly 

depending upon the application. An industrial control system for an assembly line may be 

designed to fit into a standard-size rack with no strict limitations on weight 

 Power consumption: Power is important in battery-powered systems and is often important 

in other applications as well. Power can be specified in the requirements stage in terms of 

battery life. 

 

One good way to refine at least the user interface portion of a system’s requirements is to build a 

mock-up. The mock-up may use canned data to simulate functionality in a restricted 

demonstration, and it may be executed on a PC or a workstation. But it should give the customer 

a good idea of how the system will be used and how the user can react to it. Physical, nonfunctional 

models of devices can also give customers a better idea of characteristics such as size and weight. 

 

Requirements form that can be filled out at the start of the project. We can use the form as a 

checklist in considering the basic characteristics of the system. Some of the entries in the form: 

 

 Name: This is simple but helpful. Giving a name to the project not only simplifies talking about 

it to other people but can also crystallize the purpose of the machine. 

 Purpose: This should be a brief one- or two-line description of what the system is supposed to 

do. If you can’t describe the essence of your system in one or two lines, chances are that you 

don’t understand it well enough. 

 Inputs and outputs: These two entries are more complex than they seem. The inputs and outputs 

to the system encompass a wealth of detail: 

 Types of data: Analog electronic signals? Digital data? Mechanical inputs? 

 Data characteristics: Periodically arriving data, such as digital audio samples? 

Occasional user inputs? How many bits per data element? 

 Types of I/O devices: Buttons? Analog/digital converters? Video displays? 

 Functions: This is a more detailed description of what the system does. A good way to 

approach this is to work from the inputs to the outputs: When the system receives an input, 

what does it do? How do user interface inputs affect these functions? How do different 

functions interact? 
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 Performance: It is essential that the performance requirements be identified early since they 

must be carefully measured during implementation to ensure that the system works properly. 

 Manufacturing cost: This includes primarily the cost of the hardware components. Even if you 

don’t know exactly how much you can afford to spend on system components, you should 

have some idea of the eventual cost range. Cost has a substantial influence on architecture. 

 Power: Similarly, you may have only a rough idea of how much power the system can 

consume, but a little information can go a long way. Battery-powered machines must be much 

more careful about how they spend energy. 

 Physical size and weight: You should give some indication of the physical size of the system 

to help guide certain architectural decisions. A desktop machine has much more flexibility in 

the components used than, for example, a lapel mounted voice recorder. 

 

Example of Requirement form for GPS moving map 

Name:     GPS moving map 

Purpose:    Consumer-grade moving map for driving use 

Inputs:    Power button, two control buttons 

Outputs:    Back-lit LCD display 400 X 600 

Functions:    Uses 5-receiver GPS system; three user-selectable resolutions;  

Always displays current latitude and longitude 

Performance:    Updates screen within 0.25 seconds upon movement 

Manufacturing:   cost $30 

Power:    100mW 

Physical size and weight:  No more than 2” X 6,” 12 ounces 

 

Specification 

It serves as the contract between the customer and the architects. As such, the specification 

must be carefully written so that it accurately reflects the customer’s requirements and does so in 

a way that can be clearly followed during design. 

The specification should be understandable enough so that someone can verify that it meets 

system requirements and overall expectations of the customer. It should also be unambiguous 

enough that designers know what they need to build. Designers can run into several different types 
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of problems caused by unclear specifications. If the behavior of some feature in a particular 

situation is unclear from the specification, the designer may implement the wrong functionality. If 

global characteristics of the specification are wrong or incomplete, the overall system architecture 

derived from the specification may be inadequate to meet the needs of implementation. 

A specification of the GPS system would include several components: 

 Data received from the GPS satellite constellation. 

 Map data. 

 User interface. 

 Operations that must be performed to satisfy customer requests. 

 Background actions required to keep the system running, such as operating the GPS 

receiver. 

UML, a language for describing specifications and we will use it to write a specification. 

 

Day 4 

Architecture Design 

The specification does not say how the system does things, only what the system does. The 

architecture is a plan for the overall structure of the system that will be used later to design the 

components that make up the architecture. The creation of the architecture is the first phase of 

what many designers think of as design.  

Figure shows a sample system architecture in the form of a block diagram that shows major 

operations and data flows among them. This block diagram is still quite abstract. The diagram 

does, however, go a long way toward describing how to implement the functions described in the 

specification. For example, that we need to search the topographic database and to render the 

results for the display. 
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We refine that system block diagram into two block diagrams:  

 Hardware block diagram 

 Software block diagram  

The hardware block diagram clearly shows that we have one central CPU surrounded by 

memory and I/O devices. In particular, we have chosen to use two memories: a frame buffer for 

the pixels to be displayed and a separate program/data memory for general use by the CPU.  

The software block diagram fairly closely follows the system block diagram, but we have 

added a timer to control when we read the buttons on the user interface and render data onto the 

screen.  

To have a truly complete architectural description, we require more detail, such as where 

units in the software block diagram will be executed in the hardware block diagram and when 

operations will be performed in time. 

Architectural descriptions must be designed to satisfy both functional and nonfunctional 

requirements. Not only must all the required functions be present, but we must meet cost, speed, 

power and other nonfunctional constraints. 

 

  

Designing Hardware and Software components 

The architectural description tells us what components we need. The component design 

effort builds those components in conformance to the architecture and specification. The 

components will in general include both hardware and software modules. 
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Some of the components will be ready-made. For example CPU, memory chips and so on. 

In the moving map, the GPS receiver is a good example of a specialized component that will 

nonetheless be a predesigned, standard component. We can also make use of standard software 

modules. One good example is the topographic database.  

You will have to design some components yourself. Even if you are using only standard 

integrated circuits, you may have to design the printed circuit board that connects them. You will 

probably have to do a lot of custom programming as well.  

When creating these embedded software modules, you must of course make use of your 

expertise to ensure that the system runs properly in real time and that it does not take up more 

memory space than is allowed.  

The power consumption of the moving map software example is particularly important. 

You may need to be very careful about how you read and write memory to minimize power. 

 

System Integration 

This phase usually consists of a lot more than just plugging everything together and 

standing back. Bugs are typically found during system integration, and good planning can help us 

find the bugs quickly. By building up the system in phases and running properly chosen tests, we 

can often find bugs more easily. If we debug only a few modules at a time, we are more likely to 

uncover the simple bugs and able to easily recognize them. 

System integration is difficult because it usually uncovers problems. Careful attention to 

inserting appropriate debugging facilities during design can help ease system integration problems, 

but the nature of embedded computing means that this phase will always be a challenge. 

 

FORMALISMS FOR SYSTEM DESIGN 

 

Unified Modeling Language 

UML is an object-oriented modeling language.  UML was designed to be useful at many 

levels of abstraction in the design process. UML is useful because it encourages design by 

successive refinement and progressively adding detail to the design. 

 

Object-oriented design emphasizes two concepts of importance: 
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 It encourages the design to be described as a number of interacting objects, rather than a 

few large monolithic blocks of code. 

 At least some of those objects will correspond to real pieces of software or hardware in the 

system. We can also use UML to model the outside world that interacts with our system, 

in which case the objects may correspond to people or other machines.  

  

Structural Description 

Structural description mean the basic components of the system. The principal component 

of an object-oriented design is the object. An object includes a set of attributes that define its 

internal state. When implemented in a programming language, these attributes usually become 

variables or constants held in a data structure.  

An object describing a display (such as a CRT screen) is shown in UML notation. The text 

in the folded-corner page icon is a note; it does not correspond to an object in the system and only 

serves as a comment. The attribute is an array of pixels that holds the contents of the display.  

The object is identified in two ways: It has a unique name, and it is a member of a class. 

The name is underlined to show that this is a description of an object and not of a class. A class 

defines the attributes that an object may have. It also defines the operations that determine how 

the object interacts with the rest of the world. The class has the name that we saw used in the d1 

object since d1 is an instance of class Display. The Display class defines the pixels attribute seen 

in the object. 

 

 
     A class in UML notation. 
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There are several types of relationships that can exist between objects and classes: 

 Association occurs between objects that communicate with each other but have no 

ownership relationship between them. 

 Aggregation describes a complex object made of smaller objects. 

 Composition is a type of aggregation in which the owner does not allow access to the 

component objects. 

 Generalization allows us to define one class in terms of another. 

 

A derived class inherits all the attributes and operations from its base class. In this class, Display 

is the base class for the two derived classes. A derived class is defined to include all the attributes 

of its base class  

 

UML also allows us to define multiple inheritance, in which a class is derived from more than 

one base class. We have created a Multimedia_display class by combining the Display class with 

a Speaker class for sound. The derived class inherits all the attributes and operations of both its 
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base classes, Display and Speaker. Because multiple inheritance causes the sizes of the attribute 

set and operations to expand so quickly, it should be used with care. 

 

A link describes a relationship between objects; association is to link as class is to object. We need links 
because objects often do not stand alone; associations let us capture type information about these links. 

 

Behavioral Structure 
 

One way to specify the behavior of an operation is a state machine. UML states and transition as 

show in figure. These state machines will not rely on the operation of a clock, as in hardware; 

rather, changes from one state to another are triggered by the occurrence of events. An event is 
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some type of action. The event may originate outside the system, such as a user pressing a button. 

It may also originate inside, such as when one routine finishes its computation and passes the result 

on to another routine 

  
 
We use a certain combination of elements in an object or class many times. We can give these patterns 
names, which are called stereotypes in UML. A stereotype name is written in the form <<signal>>. 
 
 

 

 A signal is an asynchronous occurrence. It is defined in UML by an object that is labeled 

as a <<signal>>. The object in the diagram serves as a declaration of the event’s existence. 

Because it is an object, a signal may have parameters that are passed to the signal’s receiver. 

 A call event follows the model of a procedure call in a programming language. 

 A time-out event causes the machine to leave a state after a certain amount of time. The 

label tm(time-value) on the edge gives the amount of time after which the transition occurs. 
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A time-out is generally implemented with an external timer. This notation simplifies the 

specification and allows us to defer implementation details about the time-out mechanism. 

 


