

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 1

Module III

Design and Development of Embedded Project

The embedded product design starts with product requirements specification and

analysis. When a requirement arises for an embedded product, the requirements are listed out

including the hardware features, the functionalities to be supported, product aesthetics (look and

feel) etc. On finalizing the requirement.

 The various hardware components and peripheral required to implement the hardware

features are identified and the interconnection among them are defined

 The control algorithm for controlling the various hardware and peripherals are developed

 Product aesthetics(look n feel) and Enclosure unit are defined

 The control algorithm is transformed to controller specific instruction using the firmware

development tools

 Hardware and firmware are integrated together and the resulting product is tested for

required functionality as per requirement specifications.

The mechanical design of the product takes care of the product aesthetics and develops a suitable

enclosure for the product. Various standard like International Organization for Standards (ISO)

and model like capability maturity model (CMM), process capability maturity model (PCMM)

etc are used in the entire design life cycle management.

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 2

There will be well defined documentation structure for entire requirement for the product.

Formal verifications of this document will be carried out before the system design starts and it is

termed as Documents Reviews.

Embedded Firmware Design and Development

The embedded firmware is responsible for controlling the various peripherals of the

embedded hardware and generating response in accordance with the functional requirements

mentioned in the requirements for the particular embedded product.

Firmware is considered as the master brain of the embedded system. In case of the

hardware breakdown, the damaged components may need to be replaced by a new component

and for firmware corruptions, the firmware should be re-loaded, to bring back the embedded

product to the normal functioning. For most of the embedded products, the embedded firmware

is stored at a permanent memory (ROM) and they are non-alterable by end users.

Designing embedded firmware requires understanding of the particular embedded

product hardware like various component interfacing, memory map details, I/O port details,

configuration and register details of the various hardware chips used and some programming

languages.

Embedded firmware development process starts with the conversion of the firmware

requirements into a program model using modeling tools like UML or flow chart based

representation. The UML diagrams or flow chart gives a diagrammatic representation of the

decision items to be taken and the tasks to be performed. Once the program model is created, the

next step is the implementation of the tasks and actions by capturing the model using a language

which is understandable by the target processors/controller.

Design Approaches

The firmware design approaches for embedded product is purely dependent on the complexity of

the functions to be performed and the speed of operation required. Two approaches are used for

firmware design. They are

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 3

 Conventional Procedural Based Firmware Design (Super Loop Based Approach)

 Embedded Operating System Based Design

The Super Loop Based Approach

 The Super Loop based firmware development approach is adopted for applications that

are not time critical and where the response time is not so important. It is very similar to a

conventional procedural programming where the code is executed task by task. The task listed at

the top of the program code is executed first and the task just below the top are executed after

completing the first task. In a multiple task based system, each task is executed in serial in this

approach.

The firmware execution flow for this will be:

 Configure the common parameters and perform initialization for various hardware

components memory, register etc.

 Start the first task and execute it

 Execute the second task

 .

 .

 Execute the last defined task

 Jump back to the first task and follow the same flow.

void main(){
 configuration();
 initialization();
 while(1){
 task1();
 task2();
 .
 .
 .
 taskn();

}
}

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 4

Almost all tasks in embedded applications are non-ending and are repeated infinitely

throughout the operation. This approach is referred Super Loop based Approach. Since the tasks

are running inside an infinite loop, the only way to come out of the loop is either a hardware

reset or an interrupt assertion. A hardware reset brings the program execution back to the main

loop. Whereas an interrupt request suspends the task execution temporarily and performs the

corresponding interrupt routine and on completion of interrupt routine it restarts the task

execution from the point where it got interrupted.

The super loop based design doesn’t require an operating system, since there is no need

for scheduling which task is to be executed and assigning priority to each task. This type of

design is deployed in low cost embedded product and products where response time is not time

critical.

A typical example of a super loop based product is an electronic video game toy

containing keypad and display unit. The programming running inside the product may be

designed in such a way that it reads the keys to detect whether the user has given any input and if

any key press is detected the graphics display is updated.

The Super loop based design is simple and straight forward without any OS related

overheads. The major drawback of this approach is that any failure in any part of a single task

may affect the total system. If the program hangs up at some point while executing a task, it may

remain there forever and ultimately the product stops functioning. Use of hardware and software

Watch Dog Timers helps in coming out from the loop when an unexpected failure occurs or

when the process hangs up.

Another major drawback is lack of real timeliness. If the number of tasks to be executed

within an application increases, the time at which each task is repeated also increases. This

brings the probability of missing out some events. For example in a system with keypad, there

will be task for monitoring the keypad connected I/O lines and this need not be the task running

while you press the keys. That is key pressing event may not be in sync with the keypad press

monitoring task within the firmware. To identify the key press, you may have to press the key for

a sufficiently long time till the keypad status monitoring task is executed internally.

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 5

Embedded Operating System Based Approach

It contains OS, which can be either a General purpose Operating System (GPOS) or real

Time Operating System (RTOS).

GPOS based design is very similar to the conventional PC based Application

development where the device contain an operating system and you will be creating and running

user applications on top of it. Examples of Microsoft Windows XP OS are PDAs, Handheld

devices/ Portable Devices and point of Sale terminals, Patient Monitoring System etc. Use of

GPOS in embedded product merges the demarcation of embedded systems and General

computing systems in terms of OS. For developing applications on the top of the OS, OS

supported APIs are used. OS based applications also requires ‘Driver Software’ for different

hardware present on the board to communicate with them.

RTOS based design approach is employed in embedded product demanding Real Time

Responses. RTOS respond in a timely and predictable manner to events. RTOS contain a real

time Kernel responsible for performing preemptive multi-tasking scheduler for scheduling the

task, multiple thread etc. RTOS allows a flexible scheduling of system resources like the CPU

and Memory and offer some way to communicate between tasks. Examples of RTOS are

Windows CE, pSOS, VxWorks, ThreadX, Micro C/OS II, Embedded Linux, Symbian etc.

Embedded Firmware Development Language

For embedded firmware development programmer can use either

 Target processor/controller specific language (Assembly language) or

 Target processor/ controller independent language (High level languages) or

 Combination of Assembly and high level language.

1. Assembly Language Based Development

Assembly language is human readable notation of machine language whereas machine

language is a processor understandable language. Processor deal only with binaries. Machine

language is a binary representation and it consist of 1sand 0s. Machine language is made

readable by using specific symbols called ‘mnemonics’. Hence machine language can be

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 6

considered as an interface between processor and programmer. Assembly language and machine

languages are processor dependent and assembly program written for one process or family will

not work with others.

Assembly language programming is the task of writing processor specific machine

code in mnemonics form, converting the mnemonics into actual processor instructions

(machine language) and associated data using an assembler.

Assembly language program was the most common type of programming adopted in the

beginning of software revolution. Even in 1990s majority of console video games were written in

assembly languages. Even today almost all low level, system related, programming is carried out

using assembly language. Some OS dependent task requires low level languages.

The general format of an assembly language instruction is opcode followed by the

Operand. Opcode tells what to do and Operand gives the information to do the task. The operand

may be single operand, dualoperand or more

For example consider the instruction MOV A, #30,

 Move the decimal value 30 to the accumulator registerof 8051

 Here MOV A is the opcode and 30 is Operand

 Same instruction in machine language like this 01110100 00011110

 Here the first 8 bit represents opcode MOV A and next 8 bit represent the operand 30.

Assembly language instructions are written in one per line. • A machine code program thus

consisting of a sequence of assembly language instructions, where each statement contains a

mnemonic. Each line of assembly language program split into four fields as given below

LABEL OPCODE OPERAND COMMENTS

Label is an optional field. A label is an identifier to remembering where data or code is

located. LABEL is commonly used for representing a memory location, address of a program,

sub-routine, code portion etc. The max length of the label differs between assemblers. Labels are

always suffixed by a colon and begin with a valid character. Labels can contain numbers from 0

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 7

to 9 and special character. Labels are used for representing subroutine names and jump locations

in Assembly language programming. Label is only an optional field.

Assembly language program written in assembly code is saved as .asm file or an .src file.

Any text editor can be used for writing assembly instructions. Similar to other high level

programming, you can have multiple source files called modules in assembly language

programming. Each module is represented by .asm or .src file. This approach is known as

modular programming. Modular program is employed when program is too complex or too big.

In modular programming the entire code is divided into sub modules and each module is made

reusable. Modular programs are usually easy to code, debug and alter.

Conversion of assembly language into machine language is carried out by a sequence of

operations.

1.1Source File to Object file Translation

Translation of assembly code to machine code is performed by assembler. The

assemblers for different target machines are different and it is common that assemblers from

multiple vendors are available in the market for the same target machines. Some assemblers are

supplied by single vendor only. Some assemblers are freely available. Some are commercial and

requires license from vendors. A51 Macro Assembler from Keil software is a popular assembler

for 8051 family microcontroller.

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 8

Each source module is written in assembly and is stored in .src or .asm file. Each file can

be assembled separately to examine the syntax errors and incorrect assembly instructions. On

assembling of each .src/.asm file a corresponding object file is created with extension .obj. The

object file does not contain the absolute address of where the generated code needs to be placed

on the program memory and hence it is called relocatable segment. It can be placed at any code

memory location and it is responsibility of the linker/loader to assign absolute address for this

module. Absolute address allocation is done at absolute object file creation stage. Each module

can share variables and subroutine among them.

Exporting a variable from a module is done by declaring that variable as PUBLIC in

source module. Importing a variable or a function from a module is done by declaring that

variable or function as EXTRN in the module where it is going to be accessed. PUBLIC

keyword informs the assembler that the variable / function need to be exported. EXTRN inform

that the variable/function needs to be imported from some other modules. While assembling a

module , on seeing variable/function with keyword EXTRN , assembler understand that these

variables or function come from an external module and it proceeds assembling the entire

module without throwing any errors, though the assembler cannot find the definition of variables

and implementation of that function.

Corresponding to a variable /function declared as PUBLIC in a module, there can be one

or modules using these variables/function using EXTRN keyword. For all those modules using

variables or function with EXTRN keyword, there should be one and only one module which

export those variables/functions PUBLIC keyword. If more than one module in a project tries to

export variables or functions with the same name using PUBLIC keyword, it will generate linker

errors. If a variable or function declared as EXTRN in one or two modules, there should be one

module defining these variables or function and exporting them using PUBLIC keyword. If no

module in a project exports the variable or functions which are declared as EXTRN in other

modules it will generate linker warnings or error depending on the error level/warning level

setting of the linker.

1.2. Library files creation and usage

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 9

Libraries are specially formatted, ordered program collection of object modules that may be used

by the linker at a later time. When a linker processes a library, only those object modules in the

library that are necessary to create the program are used. Library files are generated with the

extension ‘.lib’. Library file is some kind of source code hiding technique. If you don’t want to

reveal the source code behind the various functions you have written in your program and at the

same time you want them to be distributed to application developers for making use of them in

their applications, you can supply them as library files and give them the details of the public

functions available from the library.

For using a library file in a project, add library to the project. If you are using a commercial

version of assembler suit for your development, the vendor of utility may provide you pre written

library files for performing multiplication, floating point arithmetic, etc. as an add-on utility.

Example LIB51 from keil software.

1.3. Linker and Locator

Linker and locator is another software utility responsible for “linking the various object modules

in a multi module project and assigning absolute address to each module”. Linker generate an

absolute object module by extracting the object module from the library, if any and those obj

files created by the assembler, which is generated by assembling the individual modules of a

project. It is the responsibility of the linker to link any external dependent variables or functions

declared on various modules and resolve the external dependencies among the modules. An

absolute object file or modules does not contain any re-locatable code or data. All code and data

reside at fixed memory locations. The absolute object file is used for creating hex files for

dumping into the code memory of the processor/controller. Example ‘BL51’ from keil software.

1.4. Object to Hex File Converter

This is the final stage in the conversion of Assembly language to machine understandable

Language Hex file is the representation of the machine code and the hex file is dumped into the

code memory of the processor. Hex file representation varies depending on the target processor

make. For INTEL processor the target hex file format will be ‘Intel HEX’ and for Motorola, hex

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 10

file should be in ‘Motorola HEX’ format. HEX files are ASCII files that contain a hexadecimal

representation of target application. Hex file is created from the final ‘Absolute Object File’

using the Object to Hex file Converter utility. Example ‘OH51’ from keil software.

Advantage of Assembly Language Based Development

Assembly language based development is the most common technique adopted from the

beginning of the embedded technology development. Thorough understanding of the processor

architecture, memory organization, register set and mnemonics is very essential for Assembly

Language based Development.

• Efficient Code Memory and data Memory Usage (Memory Optimization)

Since the developer is well versed with the target processor architecture and memory

organization, optimized code can be written for performing operations. This lead to the less

utilization of code memory and efficient utilization of data memory. Memory is the primary

concern in any embedded product.

• High Performance

Optimized code not only improves the code memory usage but also improve the total

system performance. Though effective assembly coding optimum performance can be achieved

for target applications.

• Low level Hardware access

Most of the code for low level programming like accessing external device specific

registers from the operating system kernel, device drivers and low level interrupt routine etc. are

making use of direct assembly coding since low level device specific operation support is not

commonly avail with most of the high level language compilers

 Code Reverse Engineering

Reverse Engineering is the process of understanding the technology behind a product by

extracting the information from the finished product. Reverse engineering is performed by

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 11

‘hawkers’ to reveal the technology behind the proprietary product. Though most of the product

employs code memory protection, if it may be possible to break the memory protection and read

the code memory, it can easily be converted into assembly code using disassembler program for

the target machine.

Drawbacks of Assembly Language based Development

• High Development time

Assembly language programs are much harder to program than high level languages.

Developer must have thorough knowledge of architecture, memory organization and register

details of target processor in use. Learning the inner details of the processor and its assembly

instructions are high time consuming and it create delay impact in product development.

Solution: Use a readily available developer who is well versed in target processor

architecture assembly instructions. Also more lines of assembly code are required for performing

an action which can be done with a single instruction in a high level language like C.

• Developer Dependency

There is no common rule for developing assembly language based applications whereas

all high level language instructs certain set of rules for application development. In Assembly

language programming, the developers will have the freedom to choose the different memory

locations and registers. Also programming approach varies from developers to developers

depending on their taste. For example moving a data from a memory location to accumulator can

be achieved through different approaches. If the approach is done by a developer is not

documented properly at the development stage, it may not be able to recollect at later stage or

when a new developer is instruct to analyze the code , he may not be able to understand what is

done and why it is done. Hence upgrading/modifying on later stage is more difficult.

Solution: Well Documentation

 Non- Portable

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 12

Target applications written in assembly instructions are valid only for that particular family

of processors. Example - Application written for Intel X86 family of processors. It cannot be

reused for other target processors. If the target processor changes, a complete rewriting of the

application using assembly instructions for the new target processor is required.

2. High Level Language Based Development

Any High level language with a supported cross compilers for the target processor can be

used for embedded firmware development. Cross Compilers are used for converting the

application development in high level language into target processor specific assembly code.

Most commonly used language is C. C is well defined easy to use high level language with

extensive cross platform development tool support.

The program written in any of the high level language is saved with the corresponding

language extension. Any text editor provided by IDE tool supporting the high level language in

use can be used for writing the program. Most of the high level language support modular

programming approach and hence you can have multiple source files called modules written in

corresponding high level language. The source file corresponding to each module is represented

by a file with corresponding language extension. Translation of high level source code to

executable object code is done by a cross compiler. The cross compiler for different high level

language for same target processor are different. Without cross-compiler support a high level

language cannot be used for embedded firmware development. Example C51 Compiler from

Keil.

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 13

Advantages of High Level Language based Development

• Reduced Development Time: Developers requires less or little knowledge on the internal

hardware details and architecture of the target processor. Syntax of high level language and bare

minimal knowledge of memory organization and register details of target processor are the only

pre- requisites for high level language based firmware development. With High level language,

each task can be accomplished by lesser number of lines of code compared to the target

processor specific assembly language based development

• Developer Independency: The syntax used by most of the high level languages are universal

and a program written in high level language can be easily be understood by a second person

knowing the syntax of the language. High level language based firmware development makes the

firmware, developer independent. High level language always instruct certain set of rules for

writing code and commenting the piece of code

• Portability: Target applications written in high level languages are converted to target

processor understandable format by a cross compiler. An application written in high level

language for a particular target processor can be easily converted to another target processor with

little effort by simply recompiling the code modification followed by the recompiling the

application for the required processor. This makes the high level language applications are highly

portable.

Limitations of High level language based Development

• Some cross compilers avail for the high level languages may not be so efficient

ingenerating optimized target processor specific instructions

• Target images created by such compilers may be messy and no optimized in terms of

performance as well as code size.

3. Mixing Assembly and High level Language

High level language and assembly languages are usually mixed in three ways

 Mixing assembly language with high level language

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 14

 Mixing high level language with Assembly

 In line assembly programming

Mixing Assembly Language with High level Language (Assembly Language with ‘C’)

Assembly routines are mixed with C in situations where entire program is written in C

and the cross compiler in use do not have built in support for implementing certain features like

Interrupt Service Routine or if the programmer want to take the advantage of speed and

optimized code offered by machine code generated by handwritten assembly rather than cross

compiler generated machine code.

When accessing certain low level hardware, the timing specification may be very critical

and a cross compiler generated binary may not be able to offer the required time specifications

accurately. Writing the hardware access routine in processor specific assembly language and

invoking it from C is the most advised method to handle such situations. Mixing C and

Assembly is little complicated in the sense. The programmer must be aware of how parameters

are passed from the C routine to Assembly and– values are returned from assembly routine to C

and how the assembly routine is invoked from the C code. These are cross compiler dependent.

There is no universal rule for it. You must get the information from the documentation of cross

compiler you are using different cross compilers implement these features in different ways

depending upon the general purpose registers and the memory supported by the target processor

Example

1. Write a simple function in C that passes parameters and return values the way you want your

assembly routine to

2. Use the SRC directive (#pragma SRC) so that compiler generate an SRC file instead of .OBJ

file

3. Compile the C code. Since the SRC directive is specified the .SRC file is generated. The .SRC

file contain the assembly code generated for the C code you wrote

4. Rename .SRC to .A51 file

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 15

5. Edit .A51 file and insert the assembly code you want to execute in the body of the assembly

function shell included in the .A51 file.

#pragma src
Unsigned char my_assembly_func(unsigned int argument){

return (argument+1);
}

The special compiler directive SRC generates the Assembly code corresponding to the ‘C’

function and each line of the source code is converted to the corresponding Assembly

instruction. You can easily identify the Assembly code generated for each line of the source code

since it is implicitly mentioned in the generated .SRC file. By inspecting this code segments you

can find out which register are used for holding the variables ofthe ‘C’ function and you can

modify the source code by adding the assembly routine you want.

Mixing High level Language with Assembly Language (‘C’ with Assembly Language)

Mixing the code written in high level language like C and assembly language is useful in the

following scenarios

 The source code is already available in Assembly language and a routine written in a high

level language like C need to be included to the existing code.

 The entire code is planned in Assembly code for various reasons like optimized code,

optimal performance, efficient code memory utilization and proven expertise in handling the

Assembly, etc. But some portions of the code may be very difficult and tedious to code in

Assembly

 To include built in library functions written in C language provided by the cross compiler

Most often the functions written in C use parameter passing to the function and returns values to

the calling function. By mixing C with Assembly

 How parameters are passed to the function

 How values are returned from the function

 How the function is invoked from the assembly language environment

 MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Department of CSE 16

Parameters are passed to the function and values are returned from the function using CPU

registers, stack memory and fixed memory. Its implementation is cross compiler dependent and

it varies across cross compilers.

Example Keil C51 cross compiler.C51 allows passing of maximum of three arguments through

general purpose registers R2 to R7. If three arguments are char variables, they are passed to the

functions using registers R7,R6, andR5. If the parameters are int variables they are passing using

register pairs(R7,R6),(R5,R4) and (R4,R3). If the number of arguments is greater than three, the

first three arguments are passed through registers and the rest is passed through fixed memory

locations. Return values are usually passed through fixed memory locations. R7 is used for

returning char value and register pair (R7,R6) used for returning int values.

Inline Assembly

This is another technique for inserting target processor/controller specific assembly

instructions at any location of source code written in high level language C. This avoids the

delay in calling an assembly routine from a C code. Special keywords are used to indicate that

the start and end of the Assembly instructions. The keywords are cross compiler specific. C51

uses #pragma asm and #pragma endasmto indicate a block of code written in assembly.

Eg: #pragma asm

 MOV A,#13H

 #pragma endasm

