

Sangeeth’s Study Material

1

Integration and Testing of Embedded Hardware and Firmware

 Integration testing of the embedded hardware and firmware is the immediate step

following the embedded hardware and firmware development. The final embedded hardware

constitute of a PCB with all necessary components affixed to it as per original schematic

diagram. Embedded firmware represents the control algorithm and configuration data necessary

to implement the product requirements on the product. Embedded firmware will be in a target

processor/controller understandable format called machine language (sequence of 1’s and O’s-

Binary). The target embedded hardware without embedding the firmware is a dumb device and

cannot function properly. If you power up the hardware without embedding the firmware, the

device may behave in an unpredicted manner.

Both embedded hardware and firmware should be independently tested to ensure their

proper functioning. Functioning of individual hardware sections can be done by writing small

utilities which checks the operation of the specified part. The targeted functionalities of the

embedded firmware can easily be checked by the simulator environment provided by the

embedded firmware development tool’s IDE. By simulating the firmware, the memory contents,

register details, status of various flags and registers can easily be monitored and it gives an

approximate picture of “What happens inside the processor/controller and what are the states of

various peripherals” when the firmware is running on the target hardware.

Integration of Hardware and Firmware

Integration of hardware and firmware deals with the embedding of firmware into the target

hardware board. It is the process of ‘Embedding Intelligence' to the product. The embedded

processors/controllers used in the target board may or may not have built in code memory.

If the processor/controller does not support built in code memory or the size of the firmware is

exceeding the memory size supported by the target processor/controller, an external dedicated

EPROM/ FLASH memory chip is used for holding the firmware. This chip is interfaced to the

processor/controller.

A variety of techniques are used for embedding the firmware into the target board. The

commonly used firmware embedding techniques for a non-OS based embedded system are

explained below.

Sangeeth’s Study Material

2

1. Out of Circuit Programming

2. In System Programming (ISP)

3. In Application Programming (IAP)

4. Use of Factory Programmed Chip

5. Firmware Loading for Operating System Devices

1. Out of Circuit Programming

Out-of-circuit programming is performed outside the target board. The processor or memory

chip into which the firmware needs to be embedded is taken out of the target board and it is

programmed with the help of a programming device.

The programming device is a dedicated unit which contains the necessary hardware circuit to

generate the programming signals. It contains a ZIF socket with locking pin to hold the device to

be programmed. The device will be under the control of a utility program running on a PC.

The commands to control the programmer are sent from the utility program to the programmer

through the interface in the figure.

The sequence of operations for embedding the firmware with a programmer is listed below.

1. Connect the programming device to the specified port of PC (USB/COM port/parallel port)

2. Power up the device.

3. Execute the programming utility on the PC and ensure proper connectivity is established

between PC and programmer. In case of error, turn off device power and try connecting it again

4. Unlock the ZIF socket by turning the lock pin

5. Insert the device to be programmed into the open socket as per the insert diagram shown on

the programmer

Sangeeth’s Study Material

3

6. Lock the ZIF socket

7. Select the device name from the list of supported devices

8. Load the hex file which is to be embedded into the device

9. Program the device by ‘Program’ option of utility program

10. Wait till the completion of programming operation.

11. Ensure that programming is successful by checking the status LED on the programmer

12. Unlock the ZIF socket and take the device out of programmer.

The major drawback of out-of-circuit programming are

 High development time: Whenever the firmware is changed, the chip should be taken out

of the development board for re-programming. This is tedious and prone to .chip

damages due to frequent insertion and removal.

 The programmer facilitates programming of only one chip at a time and it is not suitable

for batch production. Using a ‘Gang Programmer’ resolves this issue to certain extent. A

gang programmer is similar to an ordinary programmer except that it contains multiple

ZIF sockets (4 to 8) and capable of programming multiple devices at a time.

 Once the product is deployed in the market in a production environment, it is very

difficult to upgrade the firmware.

The out-of-system programming technique is used for firmware integration for low end

embedded products which runs without an operating system. Out-of-circuit programming is

commonly used for development of low volume products and Proof of Concept (PoC) product

Development.

2. In System Programming (ISP)

 With ISP, programming is done 'within the system’, meaning the firmware is embedded

into the target device without removing it from the target board. It is the most flexible and easy

way of firmware embedding. The only pre-requisite is that the target device must have an ISP

support.

Sangeeth’s Study Material

4

 The communication between the target device and ISP utility will be in a serial format.

The serial protocols used for ISP may be Joint Test Action Group (JTAG) or Serial Peripheral

Interface (SPI) or any other proprietary protocol.

2.1 In System Programming with SPI Protocol

 Devices with SPI In System Programming support contains a built-in SPI interface and

the on-chip EEPROM or FLASH memory is programmed through this interface.

The primary I/O lines involved in SPI - In System Programming are listed below.

 MOSI - Master Out Slave In

 MISO - Master In Slave Out

 SCK-System Clock

 RST - Reset of Target Device

 GND - Ground of Target Device

Serial Peripheral Interface Protocol

PC acts as the master and target device acts as the slave in ISP. The program data is sent to the

MOSI pin of target device and the device acknowledgement is originated from the MISO pin of

the device. SCK pin acts as the clock for data transfer.

A utility program can be developed on the PC side to generate the above signal lines. Since the

target device works under a supply voltage less than 5V, it is better to connect these lines of the

target device with the parallel port of the PC.

Sangeeth’s Study Material

5

The key player behind ISP is a factory programmed memory (ROM) called Boot ROM. The

Boot ROM normally resides at the top end of code memory space. It contains a set of Low-level

Instruction APIs and these APIs allow the processor/controller to perform the FLASH memory

programming, erasing and reading operations. The contents of the Boot ROM are provided by

the chip manufacturer and the same is masked into every device. Firmware upgrades for products

supporting ISP is quite simple.

In Application Programming (IAP)

 In Application Programming (IAP) is a technique used by the firmware running on the

target device for modifying a selected portion of the code memory. It is not a technique for first

time embedding of user written firmware. It modifies the program code memory under the

control of the embedded application. Updating calibration data, look-up tables, etc., which are

stored in code memory, are typical examples of IAP.

 The Boot ROM resident API instructions which perform various functions such as

programming, erasing, and reading the Flash memory during ISP-mode, are made available to

the end-user written firmware for IAP.

 The Boot ROM is shadowed with the user code memory in its address range. This

shadowing is controlled by a status bit. When this status bit is set, accesses to the internal code

memory in this address range will be from the Boot ROM. When cleared, accesses will be from

the user’s code memory. Hence the user should set the status bit prior to calling the common

entry point for IAP operations.

Use of Factory Programmed Chip

It is possible to embed the firmware into the target processor/controller memory at the

time of chip fabrication itself. Such chips are known as Factory programmed chips. Once the

firmware design is over and the firmware achieved operational stability, the firmware files can

be sent to the chip fabricator to embed it into the code memory.

Factory programmed chips are convenient for mass production applications and it greatly

reduces the product development time. It is not recommended to use factory programmed chips

Sangeeth’s Study Material

6

for development purpose where the firmware undergoes frequent changes. Factory programmed

ICs are bit expensive.

Firmware Loading for Operating System Devices

The OS based embedded systems are programmed using the In System Programming (ISP)

technique. It contain a special piece of code called ‘Boot loader’ program. The features of boot

loader program are as follows:

 Takes control of the OS and application firmware embedding and copy the OS image to

the RAM of the system for execution.

 Contains necessary drivers for initializing the supported interfaces like UART, TCP/IP.

 Implements menu options for selecting the source for OS image to load

 In case of the network based loading, the bootloader broadcasts the target’s presence over

the network and the host machine on which the OS image resides can identify the target

device by capturing this message. Once a communication link is established between the

host and target machine, the OS image can be directly downloaded to the FLASH

memory of the target device.

Embedded System development environment

Components of Embedded development environment

 Host Computer: Acts as the heart of development environment.

 IDE Tools: Tools for firmware design and development

 Electronic Design Automation Tools: Embedded Hardware Design

 Emulator hardware: Debugging target board

 Signal Sources (function generator): Simulates inputs to target board

 Target Hardware Debugging tools: CRO, Multimeter ,Logic Analyser for debugging

hardware

 Target Hardware

IDE

 In Embedded System, IDE stands for an integrated environment for developing and

debugging the target processor specific embedded firmware. An IDE is also known as integrated

Sangeeth’s Study Material

7

design environment or integrated debugging environment. IDE is a software package which

bundles a Text Editor, Cross-compiler, Linker and a Debugger. IDE is a software application that

provides facilities to computer programmers for software development. IDEs can either

command line based or GUI based. IDE consists of

1. Text Editor or Source code editor

2. A compiler and an interpreter

3. Build automation tools

4. Debugger

5. Simulators

6. Emulators and logic analyzer

 An example of IDE is Turbo C/C++ which provides platform on windows for

development of application programs with command line interface. The other category of IDE is

known as Visual IDE which provides the platform for visual development environment, ex-

Microsoft Visual C++. IDEs used in embedded firmware are slightly different from the generic

IDE used for high level language based development for desktop applications. In Embedded

applications, the IDE is either supplied by the target processor/controller manufacturer or by

third party vendors or as Open source.

Cross Compiler/ Cross Assembler

Cross compilation is the process of converting a source code written in high level

language to a target processor/controller understandable machine code. The conversion of the

code is done by software running on a processor/controller which is different from the target

processor. The software performing this operation is referred as the Cross-compiler. In other

words cross-compilation the process of cross platform software/firmware development.

Cross Assembling is similar to cross-compiling; the only difference is that the code

written in a target processor/controller specific Assembly code is converted into its

corresponding machine code. The application converting assembly instruction to target

processor/ controller specific machine code is known as cross-assembler.

Need for Cross Compiler

Sangeeth’s Study Material

8

There are several advantages of using cross compiler some of them are as below:

 By using cross compliers we can not only develop complex embedded system but also

reliability can be improved and maintenance is easy.

 Knowledge of the processor instruction set is not required.

 Register allocation and addressing mode details are managed by the compiler.

 The ability to combine variable selection with specific operations improves program

readability.

Different types of file generated during cross compilation

1. List file (.LST file)

Listing file is generating during cross compilation process. It contain information about

the cross compilation process like cross compiler details, formatted source text, assembly code

generated from source file, symbol tables, error and warning during the cross compilation

process. The list file generated contain the following section

Page Header: A Header on each page indicates the compiler version number, source file name,

data, time and page number.

Command Line: Represents the entire command line that was used for invoking the compiler.

Source Code: The source code listing outputs the line number as well as the source code on that

line. Special cross compiler directives are used to include or exclude the conditional code in the

source code listings. Special cross compiler directives can be used to include the entire contents

of the include file in the list file.

Assembly Listing: It contains the assembly code generated by the cross compiler for the C

source code.

Symbol Listing: It contains symbolic information about the various symbols present in the cross

compiled source file. Symbol listing contain symbol name (NAME), symbol classification

(CLASS), memory space (MSPACE), data type (TYPE), offset (OFFSET) and size in bytes

(SIZE).

Sangeeth’s Study Material

9

Module Information: The module information provide the size of initialized and uninitaialized

memory areas defined by the source file.

Warning and Errors: It records the errors encountered or any statement that may create issue in

application during cross compilation. We can ignore certain warning (eg: local variable is

declared in a function and it is not used anywhere in the program). Certain warning require

prompt attention.

2. Preprocessor Output File

It is generated during cross compilation. It contain preprocessor output for the

preprocessor instructions used in the source file. This file is used for verifying the operation of

macros and conditional preprocessor directives. It is a valid C file. The file extension of

preprocessor output file is cross compiler dependent.

3. Object File (.OBJ File)

It is the lowest level file format for any platform. Cross compiling each source module converts

the various Embedded instructions and other directives present in the module to an object(.OBJ)

file. The object file is specially formatted file with data records for symbolic information, object

code, debugging information etc. OMF 1 & OMF2 are the 2 object files supported by C51 Cross

compiler. List of details included in object file are

1. Reserved memory for global variables

2. Public symbol (variable or function)names

3. External symbol (variable or function)references

4. Library files with which to link

5. Debugging information to help synchronize source lines with object files

During cross compilation process, the cross compiler sets the address of references to external

variables and functions as 0. The external references are resolved by the linker during the linking

process. Hence it is obvious that the code generated by the cross compiler is not executable

without linking it for resolving external references.

4. Map File (.MAP)

Sangeeth’s Study Material

10

Object file created contains relocatable codes that is their location in memory is not fixed. It is

the responsibility of linker to link these object modules. The locator is responsible for locating

the absolute address to each module in the code memory. Map files are generated by the linker

and loader. These files are used to keep the information of linking and locating process. Map file

contains information about the link/locate process and is composed of a number of sections.

The different sections in the map file are as follows:

Page Header: It indicates the linker version, date, time and page number.

Command Line: Represent the entire command line used for invoking linker.

CPU Details: It contain details of target CPU and memory model.

Input Modules: It includes the name of all object modules, library file and modules that are

included in the linking process.

Memory Map: It lists the starting address, length, relocation type and name of each segment in

the program.

Symbol Table: It contains the value, type and name for all symbols from different input

modules.

Inter Module Cross Reference: It includes the section name, memory type and the name of the

module in which it is defined and all modules in which it is accessed.

Program Size: It contain the size of various memory areas as well as constant and code space

for the entire application.

Warning and Errors: Errors and warnings generated while linking a program are written to

this section. It is very useful in debugging link errors.

5. Hex File (.Hex file)

Hex file is the binary executable file created from source code. The utility used for converting an

object file to a hex file is known as Object to Hex file converter. Intel HEX and Motorola HEX

are two commonly used hex file formats in embedded applications.

Intel HEX file format

Sangeeth’s Study Material

11

It is an ASCII text file in which the HEX data is represented in ASCII format in lines. The lines

in an Intel HEX files are corresponding to HEX record. Each record is made up of hexadecimal

number that represent machine language code and/or constant data. Intel HEX file is used for

transferring the program and data to a ROM or EPROM which is used as code memory storage.

Each record is made up of five fields arranged in the following format: llaaaattdd..cc

Field Description

: Start of every Intel HEX record

ll Record length in data bytes

aaaa Address field representing the start address for subsequent data in the record.

tt Record type 00: Data Record; 01: End of File Record; 10: 8086 Segment Address

Record; 11: Extended Linear Address Record.

dd Data field that represent one byte of data.

cc Checksum field representing the checksum of the record.

: L l a a a a t t d d d d d D C c

: 0 3 0 0 0 0 0 0 0 2 0 C 1 F D 0

: indicates the start of a new record. ll(03) gives the number of data bytes in the record. The start

address (aaaa) of data in the record is 0000H. The record type byte tt for this record is 03. The

data for above record are 02, 0C and 1F. They are supposed to place at three consecutive

memory locations in the EPROM with starting address 0000H.

Motorola HEX file Format

It is an ASCII text file where HEX data is represented in ASCII format in lines. The lines in

Motorola HEX file represent a HEX Record. Each record is made up of following fields

Field Description

SOR Start of Record.

RT Record Type. 0: Header; 1: data Record with 16 bit start address; 2:

Data record with 24 bit start address; 9: End of File Record

Length (ll) Stands for count of character pairs in the record.

StartAddress (aaaa) Starting address of subsequent data in the record.

Code/Data (dd) Data field that represent one byte of data.

Checksum (cc) Checksum field representing the checksum of the record.

Sangeeth’s Study Material

12

Disassembler / Decompiler

Disassembler is the utility program that convert machine code into assembly code. It is

complementary to assembly or cross assembly. Decompiler is a utility program that convert

machine language instruction to high level language instruction. It performs reverse operation of

compiler or cross compiler.

Both are reverse engineering tools. Reverse engineering is a technology used to reveal the

technology behind the working of a product. It is used to find out the secret behind popular

proprietary product. It helps the reverse engineering process by translating embedded firmware

to assembly /high level instruction. These are powerful tools for analyzing the presence of

malicious contents in an executable image. They are available as either freeware tool or as a

commercial tool. They generate a source code which is somewhat matching to the original

source code from which binary code is generated.

Simulator

Simulator is a software tool for simulating various functionality of the application

software. IDE provides simulator support. Simulator simulates target hardware and firmware

execution can be simulate using simulators. The features of Simulators are as follows

 Purely software based

 Doesn’t require a real target system

 Very primitive

 Lack of real time behavior

Advantage of Simulator Based Debugging

1. No need of target board: It is purely software oriented, IDE simulates the target board. Since

real hardware is not needed we can start immediately after the device interface and memory

maps are finalized this saved development time.

2. Simulated I/O peripherals: It eliminates the need for connecting IO devices for debugging

the firmware.

Sangeeth’s Study Material

13

3. Simulates abnormal conditions: It can input any parameter as input during debugging hence

can check for abnormal conditions easily.

Limitation of Simulator based Debugging

1. Deviation from real behavior: It is always carried in a development environment where

developers may not be able the debug the firmware under all possible combination of input.

2. Lack of Real Timeliness: The major limitation of simulator based debugging is that it is not

real time in behavior.

Debugging

 Debugging in embedded application is the process of diagnosing the firmware execution,

monitoring the target processor’s registers and memory while the firmware is running.

 Debugging is classified into two namely Hardware debugging and firmware debugging.

Hardware debugging deals with the monitoring of various bus signals and checking the status

lines of the target hardware. Firmware debugging deals with examining the firmware execution,

execution flow, changes to various CPU registers and status registers on execution of the

firmware to ensure that the firmware is running as per the design.

 Debugger is a special program used to find errors or bugs in other programs. It allows a

programmer to stop a program at any point and examine and change the values of the variables.

 The various debugging techniques used are as follows:

1. Incremental EEPROM Burning Techniques

 This is the most primitive type of firmware debugging technique where the code is

separated into different functional units. Instead of burning the entire code into the EEPROM

chip at once, the code is burned in incremented order. The code will be incorporate some

indication support like lighting up an LED.

 If the first functionality is found working perfectly on the target board with the

corresponding code is burned into the EEPROM, go for burning the code corresponding to the

next functionality and check whether it is working. Repeat this process till all functionalities are

Sangeeth’s Study Material

14

covered. After you found all functionalities are working properly, combine the entire source for

all functionalities together, recompile and burn the code for total system functioning.

 Obviously it is time-consuming. But remember it is one time process and once you test

the firmware in an incremental model you can go for mass production. Incremental firmware

burning technique is widely adopted in small, simple system developments and in product

development where time is not a big constraint. It is also very useful in product development

environments where no other debug tool are available.

2. Inline Breakpoint Based Firmware Debugging

 Inline breakpoint based debugging is another primitive method of firmware debugging.

Within the firmware where you want to ensure that firmware execution is reaching up to a

specified point, insert an inline debug code immediately after the point. The debug code is a

printf function which print a string given as per the firmware. You can insert debug codes

commands at each point where you want to ensure the firmware execution is covering that point.

Cross compile the source code with the debug codes embedded within it. Burn the corresponding

hex file into the EEPROM. You can view the printf generated data on a Terminal Program.

Typical usage of inline debug code and the debug information retrieved on terminal is illustrated

below

prinft(“Starting configuration\n”);

configuration();

printf(“End of configuration\n”);

printf(“Start of initialization\n”);

initialization();

printf(“End of initialization\n”);

If the firmware is error free and the execution occurs properly, you will get all the debug

messages on the terminal program.

3. Monitor Program based Firmware Debugging

Sangeeth’s Study Material

15

 Monitor program based firmware debugging is the first adopted invasive method for

firmware debugging. In this approach, a monitor program which acts as a supervisor is

developed.

The monitor program contains the following set of features

 1. Command set interface to establish communication with the debugging application.

 2. Firmware download option to code memory.

 3. Examine and modify processor registers and working memory RAM.

 4. Single Step program execution

 5. Set breakpoints in firmware execution

 6. Send debug information to debug application running on host machine.

The most common type of interface used between target board and debug application is RS-232/

USB serial interface. After the successful completion of the monitor program development, it is

compiled and burned into FLASH memory or ROM of the target board. The code memory

containing the monitor program is known as the Monitor ROM.

The monitor program usually resides at the rest vector of the target processor. The actual code

memory is downloaded into a RAM chip which is interfaced to the processor in the Von-

Neumann architecture model. Monitor ROM size varies in the range of a few kilobytes.

Sangeeth’s Study Material

16

 Monitor ROM based debugging is suitable only for development work and it is not good

choice for mass produced systems. The major drawbacks of the monitor based debugging

systems are

 The entire memory map is converted into Von-Neumann model and it is shared between the

monitor ROM, monitor program data memory, monitor program trace buffer, user written

firmware and external user memory. For 8051, the original Harvard architecture supports

64K code memory and 64K external data memory. Going for a monitor based debugging

shrink the total memory to 64k Von-Neumann memory and it needs to accommodate all

kinds of memory requirements.

 The communication link between the debug application running on Development PC and

monitor program residing in the target system is achieved through a serial link and usually

the controller's on chip UART is used for establish this link. Hence one serial port of the

target processor become dedicated to the monitor application and it cannot be used for any

other device interfacing.

4. In Circuit Emulator (ICE) Based Firmware Debugging

 The terms ‘Simulator’ and ‘Emulator’ are little bit confusing and sounds similar. Though

their basic functionality is to debug the target firmware, the way in which they achieve this

functionality is totally different.

 ‘Simulator’ is a software application that precisely duplicates (mimics) the target CPU

and simulates the various features and instructions supported by the target CPU, whereas an

‘Emulator’ is a self-contained hardware device which emulates the target CPU. The emulator

hardware contains necessary emulation logic and it is hooked to the debugging application

running on the development PC on one end and connects to the target board through some

interface on the other end. In summary, the simulator ‘simulates’ the target board CPU and the

emulator ‘emulates’ the target board CPU.

 Nowadays pure software applications which perform the functioning of a hardware

emulator is also called as ‘Emulators’. The emulator application for emulating the operation of a

PDA phone for application development is an example of a ‘Software Emulator’.

 The Emulator POD forms the heart of any emulator system and it contains the following

functional units.

Sangeeth’s Study Material

17

Emulation Device

 Emulation device is a replica of the target CPU which receives various signals from the

target board through a device adaptor connected to the target board and performs the execution

of firmware under the control of debug commands from the debug application.

 The emulation device can be either a standard chip same as the target processor or a

Programmable Logic Device (PLD) configured to function as the target CPU.

 If a standard chip is used as the emulation device, the emulation will provide real-time

execution behavior. At the same time the emulator becomes dedicated to that particular device

and cannot be re-used for the derivatives of the same chip.

 PLD-based emulators can easily be re-configured to use with derivatives of the target

CPU under consideration. A major drawback of PLD-based emulator is the accuracy of

replication of target CPU functionalities. PLD-based emulator logic is easy to implement for

simple target CPUs but for complex target CPUs it is quite difficult.

Emulation Memory

 It is the Random Access Memory (RAM) incorporated in the Emulator device. It acts as a

replacement to the target board’s EEPROM where the code is supposed to be downloaded after

each firmware modification. Hence the original EEPROM memory is emulated by the RAM of

Sangeeth’s Study Material

18

emulator. This is known as ‘ROM Emulation’. ROM emulation eliminates the hassles of ROM

burning and it offers the benefit of infinite number of reprogrammings.

 Emulation memory also acts as a trace buffer in debugging. Trace buffer is a memory

pool holding the instructions executed/registers modified/related data by the processor while

debugging. The trace buffer size is emulator dependent and the trace buffer holds the recent trace

information when the buffer overflows.

Emulator Control Logic

Emulator control logic is the logic circuits used for implementing complex hardware

breakpoints, trace buffer trigger detection, trace buffer control, etc. Emulator control logic

circuits are also used for implementing logic analyser functions in advanced emulator devices.

Device Adaptors

 Device adaptors act as an interface between the target board and emulator POD. Device

adaptors are normally pin-to-pin compatible sockets which can be inserted/plugged into the

target board for routing the various signals from the pins assigned for the target processor. The

device adaptor is usually connected to the emulator POD using ribbon cables. The adaptor type

varies depending on the target processor’s chip package.

 The above-mentioned emulators are almost dedicated ones, meaning they are built for

emulating a specific target processor and have little or less support for emulating the derivatives

of the target processor for which the emulator is built. This type/of emulators usually combines

the entire emulation control logic and emulation device (if present) in a single board. They are

known as ‘Debug Board Modules (DBMs).

 An alternative method of emulator design supports emulation of a variety of target

processors. Here the emulator hardware is partitioned into two, namely, 'Base Terminal’ and

‘Probe Card’.

 The Base terminal contains all the emulator hardware and emulation control logic except

the emulation chip (Target board CPU’s replica). The base terminal is connected to the

Development PC for establishing communication with the debug application.

 The ‘Probe Card’ board contains the device adaptor sockets to plug the board into the

target development board. The board containing the emulation chip is known as the ‘Probe Card'.

Sangeeth’s Study Material

19

5. On Chip Firmware Debugging

 Today almost all processors/controllers incorporate built in debug modules called On

Chip Debug (OCD) support. Though OCD adds silicon complexity and cost factor, from a

developer perspective it is a very good feature supporting fast and efficient firmware debugging.

 Processors/controllers with OCD support incorporate a dedicated debug module to the

existing architecture. Usually the on-chip debugger provides the means to set simple breakpoints,

query the internal state of the chip and single step through code.

 OCD module implements dedicated registers for controlling debugging. An On Chip

Debugger can be enabled by setting the OCD enable bit. Debug related registers are used for

debugger control (Enable/disable single stepping, Freeze execution, etc.) and breakpoint address

setting.

 Background Debug Mode (BDM) and Joint Test Action Group (JTAG) are the two

commonly used interfaces to communicate between the Debug application running on

Development PC and OCD module of target CPU. The interface between the hardware and PC

may be Serial/Parallel/USB.

 Background Debug Mode (BDM) interface is a proprietary On Chip Debug solution from

Motorola. BDM defines the communication interface between the chip resident debug core and

host PC where the BDM compatible remote debugger is running. BDM makes use of 10 or 26

pin connector to connect to the target board. Serial data in (DSI), Serial data out (DSO) and

Serial clock (DSCLK) are the three major signal lines used in BDM. DSI sends debug

commands serially to the target processor from the remote debugger application and DSO sends

the debug response to the debugger from the processor. Synchronization of serial transmission is

done by the serial clock DSCLK generated by the debugger application. Debugging is controlled

by BDM specific debug commands.

 Chips with JTAG debug interface contain a built-in JTAG port for communicating with

the remote debugger application. JTAG is the alternate nappe for IEEE 1149.1 standard. Like

BDM, JTAG is also a serial interface. The signal lines of JTAG protocol are explained below.

 Test Data In (TDI): It is used for sending debug commands serially from remote

debugger to the target processor.

 Test Data Out (TDO): Transmit debug response to the remote debugger from target CPU.

Sangeeth’s Study Material

20

 Test Clock (TCK): Synchronizes the serial data transfer.

 Test Mode Select (TMS): Sets the mode of testing.

 Test Reset (TRST): It is an optional signal line used for resetting the target CPU.

 The serial data transfer rate for JTAG debugging is chip dependent. It is usually within

the range of 10 to 1000 MHz.

