Memory Arrays

_- Digital Design and Computer Architecture
David Money Harris and Sarah L. Harris

ROM Storage

Data $_{1}=A_{1}+A_{0}$
$D a t a_{n}=A_{1} A_{n}$

Example: Logic with ROMs

- Implement the following logic functions using a $2^{2} \times 3$-bit ROM:
- $X=A B$
- $Y=A+B$
- $Z=A \bar{B}$

Logic with Any Memory
 Array

Data $_{2}=A_{1} \oplus A_{0}$
Data $_{1}=A_{1}+A_{0}$
Data $_{0}=\bar{A}_{1} A_{0}$

Multi-ported Memories

- Port: address/data pair
- 3-ported memory
- 2 read ports (A1/RD1, A2/RD2)
- 1 write port (A3/WD3, WE3 enables writing)
- Small multi-ported memories are called register files

Memory

- Efficiently store large amounts of data
- Three common types:
- Dynamic random access memory (DRAM)
- Static random access memory (SRAM)
- Read only memory (ROM)
- An M-bit data value can be read or written at each unique N bit address.

Memory Arrays

- Two-dimensional array of bit cells
- Each bit cell stores one bit
- An array with N address bits and M data bits:
- 2^{N} rows and M columns
- Depth: number of rows (number of words)

```
#\
```

- Width: number of columns (size of word)
- Array size: depth \times width $=2^{N} \times M$

Memory Array:
 Example

- $2^{2} \times 3$-bit array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100

Example:

Memory
 Arrays

Memory

- Wordline:
- similar to an enable
- allows a single row in the memory array to be read or written
- corresponds to a unique address
- only one:Wordline is HIGH at any given time

Memory

Arrays

DRAM bit cell:
bitline

SRAM bit cell:

