
MODULE-6
CACHE MEMORY,VIRTUAL MEMORY

The Memory System

Cache Memories

Cache Memories
 Processor is much faster than the main memory.

 As a result, the processor has to spend much of its time waiting
while instructions and data are being fetched from the main
memory.

 Major obstacle towards achieving good performance.
 Speed of the main memory cannot be increased beyond a certain

point.
 Cache memory is an architectural arrangement which makes the

main memory appear faster to the processor than it really is.(to
increase the effective speed of the memory system)

 Cache contains a copy of portions of main memory.
 Cache memory is based on the property of computer programs known

as “locality of reference”.

Cache Main
memoryProcessor

Locality of Reference
 Analysis of programs indicates that many instructions in localized areas of

a program are executed repeatedly during some period of time, while the
others are accessed relatively less frequently.
 These instructions may be the ones in a loop, nested loop or few

procedures calling each other repeatedly.
 This is called “locality of reference”.

 Temporal locality of reference:
 Recently executed instruction is likely to be executed again very soon.

This occurs when a program loop is executed, the same set of
instructions are referenced and fetched repeatedly.

 Spatial locality of reference:
 Instructions with addresses close to a recently instruction are likely to

be executed soon. This occurs as the instructions are stored in
consecutive memory locations.

Levels of cache
 To decrease memory time, low miss rate

 L1 –level-1 cache memory built onto microprocessor chip(small,fast)

 L2 –level-2 cache memory is on a separate chip (large,slower than L1)

 L1 cache

 L2 cache

 Main memory

Virtual memory

Chapter 8 <6> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
Memory Hierarchy

Technology Price / GB
Access
Time (ns)

Bandwidth
(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
pe

e
d

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000

Cache memories

 Processor issues a Read request, a block of words is transferred from the
main memory to the cache, one word at a time.

 Subsequent references to the data in this block of words are found in the
cache.

 At any given time, only some blocks in the main memory are held in the
cache. Which blocks in the main memory are in the cache is determined
by a “mapping function”.

 When the cache is full, and a block of words needs to be transferred
from the main memory, some block of words in the cache must be
replaced. This is determined by a “replacement algorithm”.

Cache
Main

memoryProcessor

Cache hit
 Existence of a cache is transparent to the processor. The processor issues

Read and Write requests in the same manner.

 If the data is in the cache it is called a Read or Write hit.

 Read hit:

 The data is obtained from the cache.
 Write hit:

 Cache has a replica of the contents of the main memory.

 Contents of the cache and the main memory may be updated
simultaneously each time CPU writes into cache. This is the write-
through protocol.Main memory always contain the same version of data
as the cache contains.

 Update only the contents of the cache during a write operation, and
mark it as updated by setting a bit known as the dirty bit or modified
bit(flag). The contents are copied to the main memory whenever this
block is replaced. This is write-back or copy-back protocol.

Cache miss
 If the data is not present in the cache, then a Read miss or Write

miss occurs.

 Read miss:
 Block of words containing this requested word is transferred from the memory.

 After the block is transferred, the desired word is forwarded to the processor.

 The desired word may also be forwarded to the processor as soon as it is
transferred without waiting for the entire block to be transferred. This is
called load-through or early-restart.

 Write-miss:
 Write-through protocol is used, then the contents of the main memory are

updated directly.

 If write-back protocol is used, the block containing the

addressed word is first brought into the cache. The desired word

is overwritten with new information.

Chapter 8 <10> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
 What data is held in the cache?
Ideally, cache anticipates needed data and puts it in cache from main memory.

But impossible to predict future. Use past to predict future –exploits temporal and spatial locality:

 Temporal locality: copy recently accessed data into cache

 Spatial locality: copy neighboring data into cache too. If 1 word is fetched ,group of words are

 fetched(cache block),B=C(capacity)/b(block size)

 How is data found?
Cache organized into S sets

Each memory address maps to exactly one set

Caches categorized by no: of blocks in a set:

 Direct mapped: 1 block per set(S=B)

 N-way set associative: N blocks per set(S=B/N)

 Fully associative: all cache blocks in 1 set(S=1)

 What data is replaced to make room for new data when the cache is full?

Least-recently used way in the set

Cache Design Questions

Chapter 8 <11> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
Direct Mapped Cache

 Two least significant bits of the 32-bit address are called the
byte offset, because they indicate the byte within the word.
The next three bits are called the set bits, because they
indicate the set to which the address maps.
The remaining 27 tag bits indicate the memory address of the
data stored in a given cache set.

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]

mem[0x00...04]

mem[0x00...08]

mem[0x00...0C]

mem[0x00...10]

mem[0x00...14]

mem[0x00...18]

mem[0x00..1C]

mem[0x00..20]

mem[0x00...24]

mem[0xFF...E0]

mem[0xFF...E4]

mem[0xFF...E8]

mem[0xFF...EC]

mem[0xFF...F0]

mem[0xFF...F4]

mem[0xFF...F8]

mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)

Chapter 8 <12> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
Hardware

V-valid bit –indicate whether
the set hold meaningful data

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

Chapter 8 <13> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
1.Find the number of set and tag bits for a direct mapped cache with
1024 sets and a one-word block size. The address size is 32 bits.

Solution: A cache with 2^10 sets requires log2(2^10) = 10 set bits.
The two least significant bits of the address are the byte offset, and
the remaining 32 - 10 - 2 = 20 bits form the tag.

2.Suppose a computer has 4K(2^12) main memory and 1K cache
memory.To address a word in main memory,12 bit is needed.To
address a word in cache memory ,10 bit is needed.

Solution:10 bit set and 12-10=2 bit tag

Examples:-

Chapter 8 <14> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

MIPS assembly code

 addi $t0, $0, 5

loop: beq $t0, $0, done

 lw $t1, 0x4($0)

 lw $t2, 0x8($0)

 lw $t3, 0xC($0)

 addi $t0, $t0, -1

 j loop

done:

Miss Rate = 3/15

 = 20%

Temporal Locality

Compulsory Misses

 Performance

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte
OffsetMemory

Address

V
3
00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Chapter 8 <15> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

MIPS assembly code

 addi $t0, $0, 5

loop: beq $t0, $0, done

 lw $t1, 0x4($0)

 lw $t2, 0x24($0)

 addi $t0, $t0, -1

 j loop

done:

Miss Rate = 10/10

 = 100%

Conflict Misses

Direct Mapped Cache: Conflict

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte
OffsetMemory

Address

V
3
00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Chapter 8 <16> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
N-Way Set Associative Cache

An N-way set associative cache
reduces conflicts by providing N
blocks in each set where data
mapping to that set might be
found.
 Each memory address still maps
to a specific set, but it can map
to any one of the N blocks in the
set.
 Hence, a direct mapped cache is
another name for a one-way set
associative cache.
 N is also called the degree of
associativity of the cache.
Low miss rate,expensive to
build,slower.

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

Chapter 8 <17> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
MIPS assembly code

 addi $t0, $0, 5

loop: beq $t0, $0, done

 lw $t1, 0x4($0)

 lw $t2, 0x24($0)

 addi $t0, $t0, -1

 j loop

done:

Miss Rate = 2/10

 = 20%

Associativity reduces

conflict misses

 Performance

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Chapter 8 <18> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

Reduces conflict misses

Expensive to build

Fully Associative Cache

A fully associative cache contains a single set with B ways, where B is the number of blocks.
A memory address can map to a block in any of these ways. A fully associative cache is
another name for a B-way set associative cache with one set.

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Replacement Methods:-

 In a direct mapped cache, each address maps to a unique block and set. If a
set is full when new data must be loaded, the block in that set is replaced
with the new data.

 In set associative and fully associative caches, the cache must choose which
block to evict when a cache set is full. Temporal locality says LRU is used
because it is least likely to be used again soon.

 In a two-way set associative cache, a use bit, U, indicates which way within a
set was least recently used. Each time one of the ways is used, U is adjusted
to indicate the other way. For set associative caches with more than two
ways, tracking the least recently used way becomes complicated. To simplify
the problem, the ways are often divided into two groups and U indicates
which group of ways was least recently used.

 Most common replacement algorithms used are:

 Random replacement

 FIFO

 LRU

 Upon replacement, the new block replaces a random block within the least
recently used group. Such a policy is called pseudo-LRU and is good enough in
practice.

The Memory System

Virtual Memories

Virtual memories
 Recall that an important challenge in the design of a computer system is to

provide a large, fast memory system at an affordable cost.
 Architectural solutions to increase the effective speed and size of the memory

system.
 Cache memories were developed to increase the effective speed of the memory

system.
 Virtual memory is an architectural solution to increase the effective size of the

memory system.
 Recall that the addressable memory space depends on the number of address bits

in a computer.

 For example, if a computer issues 32-bit addresses, the addressable memory
space is 4G bytes.

 Physical main memory in a computer is generally not as large as the entire
possible addressable space.

 Physical memory typically ranges from a few hundred megabytes to 1G bytes.
 Large programs that cannot fit completely into the main memory have their parts

stored on secondary storage devices such as magnetic disks.

 Pieces of programs must be transferred to the main memory from secondary
storage before they can be executed.

23

Virtual memories (contd..)
 When a new piece of a program is to be transferred to the main memory, and the

main memory is full, then some other piece in the main memory must be replaced.

 Recall this is very similar to what we studied in case of cache memories.
 Operating system automatically transfers data between the main memory and

secondary storage.

 Application programmer need not be concerned with this transfer.

 Also, application programmer does not need to be aware of the limitations
imposed by the available physical memory.

 Techniques that automatically move program and data between main memory and
secondary storage when they are required for execution are called virtual-memory
techniques.

 Programs and processors reference an instruction or data independent of the size of
the main memory.

 Processor issues binary addresses for instructions and data.

These binary addresses are called logical or virtual addresses.
 Virtual addresses are translated into physical addresses by a combination of hardware

and software subsystems.

 If virtual address refers to a part of the program that is currently in the main
memory, it is accessed immediately.

 If the address refers to a part of the program that is not currently in the main
memory, it is first transferred to the main memory before it can be used.

24

Virtual memory organization

Data

Data

DMA transfer

Physical address

Physical address

Virtual address

Disk storage

Main memory

Cache

MMU

Processor
•Memory management unit (MMU) translates
virtual addresses into physical addresses.
•If the desired data or instructions are in the
 main memory they are fetched as described
 previously.
•If the desired data or instructions are not in
 the main memory, they must be transferred
 from secondary storage to the main memory.
•MMU causes the operating system to bring
 the data from the secondary storage into the
 main memory.

Chapter 8 <25> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

Takes milliseconds to seek correct location on disk

Hard Disk

Read/Write
Head

Magnetic
Disks

Chapter 8 <26> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
 Virtual addresses

 Programs use virtual addresses

 Entire virtual address space stored on a hard drive

 Subset of virtual address data in DRAM

 CPU translates virtual addresses into physical addresses (DRAM
addresses)

 Data not in DRAM fetched from hard drive

 Memory Protection
 Each program has own virtual to physical mapping

 Two programs can use same virtual address for different data

 Programs don’t need to be aware others are running

 One program (or virus) can’t corrupt memory used by another

Virtual Memory

Chapter 8 <27> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Physical memory acts as cache for virtual memory

Cache/Virtual Memory Analogues

Chapter 8 <28> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
 Page size: amount of memory transferred from hard disk to DRAM at once

 Address translation: determining physical address from virtual address

 Page table: lookup table used to translate virtual addresses to physical
addresses

Virtual Memory Definitions

Chapter 8 <29> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
Address Translation

Example:
System:---Virtual memory size: 2 GB = 231 bytes
Physical memory size: 128 MB = 227 bytes
Page size: 4 KB = 212 bytes

Organization:--Virtual address: 31 bits
Physical address: 27 bits
Page offset: 12 bits
Virtual pages = 231/212 = 219 (VPN = 19 bits)
Physical pages = 227/212 = 215 (PPN = 15 bits)

Continued……….

Virtual memory system uses a page table to perform
address translation.

 A page table contains an entry for each virtual page,
indicating its location in physical memory or on the disk.

The page table access translates the virtual address used
by the program to a physical address.

 The physical address is then used to actually read or write
the data. The page table is so large that it is located in
physical memory.Each load or store involves two physical
memory accesses: a page table access, and a data access.

 To speed up address translation, a translation lookaside
buffer (TLB) caches the most commonly used page table
entries.

Chapter 8 <31> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

 19-bit virtual page numbers
 15-bit physical page numbers

Virtual Memory Example

If a page fault occurs,data is fetched from hard disk.
The MSB of the virtual or physical address specify the virtual or physical page number. The LSB specify
the word within the page and are called the page offset.
Physical memory can only hold up to 1/16th of the virtual pages at any given time. The rest of the virtual
pages are kept on disk.

Chapter 8 <32> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
Virtual Memory Example

What is the physical address of
virtual address 0x247C?

 VPN = 0x2

 VPN 0x2 maps to PPN 0x7FFF

 12-bit page offset: 0x47C

 Physical address = 0x7FFF47C

Example:---Virtual address 0x53F8 (an offset of 0x3F8 within virtual page 5) maps to physical address
0x13F8 (an offset of 0x3F8 within physical page 1).
 The least significant 12 bits of the virtual and physical addresses are the same (0x3F8) and specify

the page offset.
 Only the page number needs to be translated to obtain the physical address from the virtual

address.

Chapter 8 <33> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

VPN is index
into page table

Page Table Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
ag

e
T

a
bl

e

Page
Offset

Physical
Address 0x7FFF 47C

Chapter 8 <34> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

What is the physical
address of virtual
address 0x5F20?

Page Table Example 1

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V
Physical

Page Number

P
a

ge
 T

a
bl

e

Chapter 8 <35> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

What is the physical
address of virtual
address 0x5F20?
– VPN = 5
– Entry 5 in page table

VPN 5 => physical
page 1

– Physical address:
0x1F20

Page Table Example 1

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
ag

e
 T

a
bl

e

Page
Offset

Physical
Address 0x0001 F20

Chapter 8 <36> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

What is the physical
address of virtual
address 0x73E0?

Page Table Example 2

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
ag

e
T

a
bl

e

Page
Offset

Chapter 8 <37> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S

What is the physical
address of virtual
address 0x73E0?
– VPN = 7
– Entry 7 is invalid
– Virtual page must be

paged into physical
memory from disk

Page Table Example 2

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
ag

e
T

a
bl

e

Page
Offset

Chapter 8 <38> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
 Page table is large

 usually located in physical memory

 Load/store requires 2 main memory accesses:
 one for translation (page table read)

 one to access data (after translation)

 Cuts memory performance in half.

Page Table Challenges

Chapter 8 <39> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
 If the processor remembers the last page table entry that it read, it can

probably reuse this translation without rereading the page table.

 In general, the processor can keep the last several page table entries in a
small cache called a translation lookaside buffer (TLB).

 Reduces no:of memory accesses for most loads/stores from 2 to 1

 Each TLB entry holds a virtual page number and its corresponding physical
page number.

 The TLB is accessed using the virtual page number. If the TLB hits, it
returns the corresponding physical page number.

 A TLB speeds up address translation.

 TLB

 Small: accessed in < 1 cycle

 Typically 16 - 512 entries

 Fully associative

 > 99 % hit rates typical

TLB-Translation Look aside Buffer

Chapter 8 <40> M
E
M

O
RY

 &
 I
/O

 S
Y

ST
E
M

S
Example 2-Entry TLB

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

Segmentation
 Memory Management Technique-memory is divided into variable sized chunks

which can be allotted to processes.

 Each chunk is called Segment.It is a set of logically related instruction or data
element associated with given name.

 Segments are generated by programmer or OS

 It is another memory protection method

Differences:

Segmentation Paging

Program is divided into variable size segments Program is divided into fixed size pages

User is responsible for division Division performed by OS

Slower than paging Paging is Faster

Visible to user Invisible to user

Eliminates internal fragmentation Suffers from internal fragmentation

Page numbers,offset is used to calculate absolute
address

Segment number,offset is used to calculate
absolute address

Variable length,2- dimension address Fixed length,1-dimension address

	Slide 1
	Slide 2
	Cache Memories
	Locality of Reference
	Levels of cache
	Slide 6
	Cache memories
	Cache hit
	Cache miss
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Replacement Methods:-
	Slide 20
	Slide 21
	Virtual memories
	Virtual memories (contd..)
	Virtual memory organization
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Continued……….
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Segmentation
	Differences:

