
Chapter 5

Input/Output Organization

➢ Accessing I / O Devices

➢ Interrupts

➢ Direct Memory Access

➢ Buses

➢ Interface Circuits

➢ Standard I / O Interfaces

2

Outline

Content Coverage

Main Memory System

Input/Output System

Arithmetic

and
Logic Unit

Operational

Registers

Program

Counter

Control Unit

Address Data/Instruction

Central Processing Unit (CPU)

Cache

memory

Instruction

Sets

3

Accessing I/O Devices
➢ Single-bus structure

◆ The bus enables all the devices connected to it to

exchange information

◆ Typically, the bus consists of three sets of lines used to

carry address, data, and control signals

◆ Each I / O device is assigned a unique set of addresses

Processor

4

Memory

I/O device 1 I/O device n

Bus

I/O Mapping

5

➢ Memory mapped I / O

◆ Devices and memory share an address space

◆ I / O looks just like memory read /write

◆ No special commands for I/ O

 Large selection of memory access commands available

➢ Isolated I / O

◆ Separate address spaces

◆ Need I / O or memory select lines

◆ Special commands for I /O

 Limited set

Memory-Mapped I/O

6

➢ When I / O devices and the memory share the same

address space, the arrangement is called memory-

mapped I /O

➢ With memory-mapped I / O, any machine instruction that

can access memory can be used to transfer data to or from

an I / O device

➢ Most computer systems use memory-mapped I / O.

➢ Some processors have special IN and OUT instructions to

perform I / O transfers

◆ When building a computer system based on these processors, the

designer has the option of connecting I / O devices to use the

special I / O address space or simply incorporating them as part of

the memory address space

I/O Interface for an Input Device

➢ The address decoder, the data and status registers,

and the control circuitry required to coordinate

I / O transfers constitute the device’s interface

circuit

Control

circuits
Address

decoder

Data and status

registers

Bus

Address lines

Data lines

Control lines

Input device

7

I/O Techniques

8

➢ Programmed

➢ Interrupt driven

➢ Direct Memory Access (DMA)

Program-Controlled I/O

➢ Consider a simple example of I / O operations

involving a keyboard and a display device in a

computer system. The four registers shown

below are used in the data transfer operations

◆ The two flags KIRQ and DIRQ in STATUS register are

used in conjunction with interrupts

DATAIN

DATAOUT

STATUS

CONTROL

DIRQ KIRQ SOUT SIN

9

DEN KEN

7 6 5 4 3 2 1 0

An Example

Move #LINE, R0 Initialize memory pointer

WAITK TestBit #0,STATUS Test SIN

Branch=0 WAITK Wait for character to be entered

Move DATAIN,R1 Read character

WAITD TestBit #1,STATUS Test SOUT

Branch=0 WAITD Wait for display to become ready

Move R1,DATAOUT Send character to display

Move R1,(R0)+ Store character and advance pointer

Compare #$0D,R1 Check if Carriage Return

Branch=0 WAITK If not, get another character

Move #$0A,DATAOUT Otherwise, send Line Feed

Call PROCESS Call a subroutine to process the

input line

➢ A program that reads one line from the keyboard,

stores it in memory buffer, and echoes it back to the

display

10

Program-Controlled I/O

11

➢ The example described above illustrates program-

controlled I / O, in which the processor repeatedly

checks a status flag to achieve the required

synchronization between the processor and an input

or output device. We say that the processor polls the

devices

➢ There are two other commonly used mechanisms for

implementing I / O operations: interrupts and direct

memory access

◆ Interrupts: synchronization is achieved by having the I / O

device send a special signal over the bus whenever it is

ready for a data transfer operation

◆ Direct memory access: it involves having the device

interface transfer data directly to or from the memory

Interrupts

12

➢ To avoid the processor being not performing any

useful computation, a hardware signal called an

interrupt to the processor can do it. At least one

of the bus control lines, called an interrupt-request

line, is usually dedicated for this purpose

➢ An interrupt-service routine usually is needed and

is executed when an interrupt request is issued

➢ On the other hand, the processor must inform the

device that its request has been recognized so

that it may remove its interrupt-request signal.

An interrupt-acknowledge signal serves this

function

Example

Program 1

COMPUTE routine

Program 2

PRINT routine

Interrupt occurs

here

1

2

i

i+1

M

13

Interrupt-Service Routine & Subroutine

14

➢ Treatment of an interrupt-service routine is very
similar to that of a subroutine

➢ An important departure from the similarity should
be noted

◆ A subroutine performs a function required by the program
from which it is called.

◆ The interrupt-service routine may not have anything in
common with the program being executed at the time the
interrupt request is received. In fact, the two programs
often belong to different users

➢ Before executing the interrupt-service routine, any
information that may be altered during the execution
of that routine must be saved. This information must
be restored before the interrupted program is
resumed

Interrupt Latency

15

➢ The information that needs to be saved and restored
typically includes the condition code flags and the
contents of any registers used by both the interrupted
program and the interrupt-service routine

➢ Saving registers also increases the delay between the
time an interrupt request is received and the start of
execution of the interrupt-service routine. The delay
is called interrupt latency

➢ Typically, the processor saves only the contents of
the program counter and the processor status register.

Any additional information that needs to be saved
must be saved by program instruction at the
beginning of the interrupt-service routine and
restored at the end of the routine

Interrupt Hardware

➢ An equivalent circuit for an open-drain bus used

to implement a common interrupt-request line

INTR

INTR1 INTR2 INTRn

Processor

16

INTR

R

Vdd

INTR=INTR1+INTR2+…+INTRn

Handling Multiple Devices

17

➢ Handling multiple devices gives rise to a number of
questions:

◆ How can the processor recogniz e the device requesting an
interrupt?

◆ Given that different devices are likely to require different
interrupt-service routines, how can the processor obtain the
starting address of the approp riate routine in each case?

◆ Should a device be allowed to interrupt the processor while
another interrupt is being serviced?

◆ How should two or more simult aneous interrupt request be
handled?

➢ The information needed to determine whether a
device is requesting an interrupt is available in its
status register

◆ When a device raises an interrupt request, it sets to 1 one of

the bits in its status register , which we will call the IRQ bit

Identify the Interrupting Device

18

➢ The simplest way to identify the interrupting device

is to have the interrupt-service routine poll all the

I / O devices connected to the bus

◆ The polling scheme is easy to implement. Its main

disadvantage is the time spen t interrogating all the devices

➢ A device requesting an interrupt may identify itself

directly to the processor. Then, the processor can

immediately start executing the corresponding

interrupt-service routine. This is called vectored

interrupts

➢ An interrupt request from a high-priority device

should be accepted while the processor is servicing

another request from a lower-priority device

Interrupt Priority

19

➢ The processor’s priority is usually encoded in a few

bits of the processor status word. It can be changed

by program instructions that write into the program

status register (PS). These are privileged instructions,

which can be executed only while the processor is

running in the supervisor mode

➢ The processor is in the su pervisor mode only when

executing operating system routines. It switches to

the user mode before beginning to execute

application program

➢ An attempt to execute a privileged instruction while

in the user mode leads to a special type of interrupt

called a privilege exception

Implementation of Interrupt Priority

➢ An example of the implementation of a multiple-

priority scheme

P
ro

c
e
s
s
o

r

Device 1 Device 2 Device p

INTA1

INTR1

Priority arbitration

circuit

INTRp

INTAp

20

Simultaneous Requests
➢ Consider the problem of simultaneous arrivals of

interrupt requests from two or more devices. The

processor must have some means of deciding

which request to service first

➢ Interrupt priority scheme with daisy chain

Device 1 Device 2 Device n
INTA

INTR

P
ro

c
e
s
s
o

r

21

Priority Group
➢ Combination of the interrupt priority scheme

with daisy chain and with individual interrupt-

request and interrupt-acknowledge lines

P
ro

c
e
s
s
o

r

Priority arbitration

circuit

Device Device Device
INTA1

INTR1

Device Device Device
INTAp

INTRp

22

Direct Memory Access

23

➢ To transfer large blocks of data at high speed, a

special control unit may be provided between an

external device and the main memory, without

continuous intervention by the processor. This

approach is called direct memory access (DMA)

➢ DMA transfers are performed by a control circuit that

is part of the I / O device in terface. We refer to this

circuit as a DMA controller.

➢ Since it has to transfer blocks of data, the DMA

controller must increment the memory address for

successive words and keep track of the number of

transfers

DMA Controller
➢ Although a DMA controller can transfer data

without intervention by the processor, its

operation must be under the control of a program

executed by the processor

➢ An example

31 30 1 0

Status and control

IRQ

IE

Starting address

Word count

Done

R/W

24

DMA Controller in a Computer System

Processor
Main

memory

Disk/DMA

controller

System bus

DMA

controller
Printer Keyboard

Disk Disk
Network

Interface

25

Memory Access Priority

26

➢ Memory accesses by the processor and the DMA

controllers are interwoven. Request by DMA devices
for using the bus are always given higher priority
than processor requests.

➢ Among different DMA devices, top priority is given
to high-speed peripherals such as a disk, a high-
speed network interface, etc.

➢ Since the processor originates most memory access
cycles, the DMA controller can be said to “steal”
memory cycles from the processor. Hence, this

interweaving technique is usually called cycle stealing

➢ The DMA controller may transfer a block of data
without interruption. This is called block/burst mode

Bus Arbitration

27

➢ A conflict may arise if both the processor and a DMA

controller or two DMA controllers try to use the bus

at the same time to access the main memory. To

resolve this problem, an arbitration procedure on bus

is needed

➢ The device that is allowed to initiate data transfer on

the bus at any given time is called the bus master.

When the current master relinquishes control of the

bus, another device can acquire this status

➢ Bus arbitration is the process by which the next

device to become the bus master take into account

the needs of various devices by establishing a

priority system for gaining access to the bus

Bus Arbitration

28

➢ There are two approaches to bus arbitration

◆ Centralized and distributed

➢ In centralized arbitration, a single bus arbiter

performs the required arbitration

➢ In distributed arbitration, all devices participate

in the selection of the next bus master

Centralized Arbitration

DMA

Controller 1BG1

P
ro

c
e
s
s
o

r

DMA

Controller 2

BBSY

BR

BG2

BR

BG1

BG2

BBSY

Processor

29

DMA controller 2 Processor

Buses

30

➢ A bus protocol is the set of rules that govern the

behavior of various devices connected to the bus

as to when to place information on the bus, assert

control signals, and so on

➢ In a synchronous bus, all devices derive timing

information from a common clock line. Equal

spaced pulses on this line define equal time

intervals

➢ In the simplest form of a synchronous bus, each

of these intervals constitutes a bus cycle during

which one data transfer can take place

Interface Circuits

➢ Keyboard to processor connection

◆ When a key is pressed, the Valid signal changes from 0

o 1, causing the ASCII code to be loaded into DATAIN

and SIN to be set to 1

◆ The status flag SIN is cleared to 0 when the processor

reads the contents of the DATAIN register

Processor

Encoder

and

Debouncing

circuit

DATAIN

SIN

Input

Interface

Keyboard

switches

Valid

Data

Data

Address

Master-ready

Slave-ready

R/W

31

Printer to Processor Connection
➢ The interface contains a data register, DATAOUT,

and a status flag, SOUT

◆ The SOUT flag is set to 1 when the printer is ready to accept

another character, and it is cleared to 0 when a new

character is loaded into DATAOUT by the processor

◆ When the printer is ready to acce pt a character, it asserts its

idle signal

Processor

DATAOUT

SOUT

Output

Interface

Data

Address

Master-ready

Slave-ready

R/W Printer

Idle

Data

Valid

32

Serial Port

33

➢ A serial port is used to connect the processor to

I / O devices that require transmission of data one

bit at a time

➢ The key feature of an interface circuit for a serial

port is that it is capable of communicating in a

bit-serial fashion on the device side and in a bit-

parallel fashion on the bus side

➢ The transformation between the parallel and

serial formats is achieved with shift registers that

have parallel access capability

A Serial Interface

Input shift register

DATAIN

DATAOUT

Output shift register

Serial input

34

Serial output

D7

D0

Standard I/O Interfaces

35

➢ The processor bus is the bus defined by the signals on the
processor chip itself. Devices that require a very high
speed connection to the processor, such as the main
memory, may be connected directly to this bus

➢ The motherboard usually provides another bus that can
support more devices.

➢ The two buses are interconnected by a circuit, which we
called a bridge, that translates the signals and protocols of
one bus into those of the other

➢ It is impossible to define a uniform standards for the

processor bus. The structure of this bus is closely tied to
the architecture of the processor

➢ The expansion bus is not subject to these limitations, and
therefore it can use a standardized signaling structure

Peripheral Component Interconnect Bus

➢ Use of a PCI bus in a computer system

Host

Main

memory

Disk

PCI Bus

Printer
Ethernet

interface

PCI

bridge

36

PCI Bus

37

➢ The bus support three independent address spaces:

memory, I / O, and configuration.

➢ The I / O address space is intended for use with

processors, such Pentium, that have a separate I / O

address space.

➢ However, the system designer may choose to use

memory-mapped I / O even when a separate I / O

address space is available

➢ The configuration space is intended to give the PCI

its plug-and-play capability.

◆ A 4-bit command that accompanies the address identifies

which of the three spaces is being used in a given data

transfer operation

Universal Serial Bus (USB)

38

➢ The USB has been designed to meet several key

objectives

◆ Provide a simple, low-cost, and easy to use

interconnection system that overcomes the difficulties

due to the limited number of I / O ports available on a

computer

◆Accommodate a wide range of data transfer

characteristics for I / O devices, including telephone and

Internet connections

◆ Enhance user convenience through a “plug-and-play”

mode of operation

USB Structure

39

➢ A serial transmission format has been chosen for the USB

because a serial bus satisfies the low-cost and flexibility

requirements

➢ Clock and data information are encoded together and

transmitted as a single signal

◆ Hence, there are no limitations on clock frequency or distance

arising from data skew

➢ To accommodate a large number of devices that can be

added or removed at any time, the USB has the tree

structure

◆ Each node of the tree has a device called a hub, which acts as an

intermediate control point between the host and the I / O device

◆ At the root of the tree, a root hub connects the entire tree to the

host computer

USB Tree Structure

hub

Host Computer

Root

Hub Hub

Hub

I/O

device

I/O

device

I/O

device

I/O

device

I/O

device

I/O

device

40

USB Tree Structure

41

➢ The tree structure enables many devices to be connected
while using only simple point-to-point serial links

➢ Each hub has a number of ports where devices may be
connected, including other hubs

➢ In normal operation, a hub copies a message that it
receives from its upstream connection to all its
downstream ports

◆ As a result, a message sent by th e host computer is broadcast to all
I / O devices, but only the addresse d device will respond to that
message

➢ A message sent from an I / O de vice is sent only upstream
towards the root of the tree and is not seen by other
devices

◆ Hence, USB enables the host to communicate with the I / O devices,
but it does not enable these devices to communicate with each
other

USB Protocols

42

➢All information transferred over the USB is

organized in packets, where a packet consists of

one or more bytes of information

➢ The information transferred on the USB can be

divided into two broad categories: control and

data

◆Control packets perform such tasks as addressing a

device to initiate data transfer, acknowledging that data

have been received correctly, or indicating an error

◆Data packets carry informatio n that is delivered to a

device. For example, input and output data are

transferred inside data packets

