PASSBAND DATA
TRANSMISSION

This chapter builds on the material developed in Chapter 5 on signal-space analysis, Tt
discusses the subject of digital data transmission over a band-pass channel that can be
linear or nonlinear. As with analog communications, this mode of data transmission reljeg
on the use of a sinusoidal carrier wave modulated by the data stream.

Specifically, the following topics are covered:

B Different methods of digital modulation, namely, phase-shift keying, quadrature-
amplitude modulation, and frequency-shift keying, and their individual variants.

» Coberent detection of modulated signals in additive white Gaussian noise, which requires
the receiver to be synchronized to the transmitter with respect to both carrier phase and
bit timing.

» Noncoberent detection of modulated signals in additive white Gaussian noise,
disregarding phase information in the received signal.

» Modems for the transmission and reception of digital data over the public switched
telephone network.

B Sophisticated modulation techniques, namely, carrierless amplitude/phase modulation and
discrete multitone, for data transmission over d wideband channel with medium to severe
intersymbol interference.

B Techniques for synchronizing the receiver to the transmitter.

Tn baseband pwlse transmission, which we studied in Chapter 4, a data stream represented
in the form of a discrete pulse-amplitude modulated (PAM) signal is transmitted directly
over a low-pass channel. In digital passband transmission, on the other hand, the incomitg
data stream is modulated onto a carrier {usnally sinusoidal) with fixed frequency limit
imposed by a band-pass channel of interest; passband data transmission is studied in thi
chapter.

The communication channel used for passband data transmission may be a mi
wave radio link, a satellite channl, or the like. Yet other applications of passband ditt
transmission are in the design of passband line codes for use on digital subscriber loops
and arthogonal frequency-division multiplexing rechnigues for broadcasting. Tn amy even
the modulation process making the transmission possible involves switching (keying)
amplitude, frequency, or phase of a sinusoidal carrier in some fashion in accordance
the incoming data. Thus there are three basic signaling schemes, and they are known ¥
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Fi:URE 6.1  1llusirative waveforms for the three basic forms of signaling binary information. (&)
Amplitnde-shift keying, (b) Phase-shifi keying. (¢} Frequency-shift keying with continuous phase.

amplitude-shifs keying (ASK), frequency-shift keying (FSK), and phase-shift keying (PSK).
They may be viewed as special cases of amplitude modulation, frequency modulation, and
phase modulation, respectively.

Figure 6.1 illustrates these three methods of modulation for the case of a source
supplying binary dara, The following points are noteworthy from Figure 6.1:

# Although in continuous-wave modulation it is usnally difficult to distinguish between
phase-modulared and frequency-modulated signals by merely looking at their wave-
forms, this is not true for PSK and FSK signals.

* Unlike ASK signals, both PSK and FSK signals have a constant envelope.

This latter property makes PSK and FSK signals impervious to amplitude nonlinearities,
commonly encountered in microwave radio and satellite channels. It is for this reason, in
practice, we find that PSK and FSK signals are preferred to ASK signals for passband data
transmission over nonlinear channels.

8 HIERARCHY OF DIGITAL MoDBULATION TECHNIQUES'

Digiral modulation techniques may be classified into coherent and noncoberenttechniques,
depending on whether the receiver is equipped with a phase-recovery circuit or not. The
phase-recovery circuit ensures that the oscillator supplying the locally generated carrier
wave in the receiver is synchronized {in both frequency and phase) to the oscillator sup-
plying the carrier wave used to originally modulate the incoming data stream in the
transmitrer.

As discussed in Chapter 4, in an M-ary signaling scheme, we may send any one of
M possible signals s,(2), s,(7), . . . , snlt), during each signaling interval of duration T, For
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almost all applications, the number of possible signals M = 2", where » is an integer, Ty,
symbol duration T = T}, where T, is the bit duration. In passband data transmisg
these signals are generated by changing the amplitude, phase, or frequency of a sinusidy]
carrier in M discrete steps. Thus we have M-ary ASK, M-ary PSK, and M-ary FSK digit,)
modulation schemes. Another way of generating M-ary signals is to combine differey
methods of modulation into a hybrid form. For example, we may combine discrete C]"a-ﬂgca
in both the amplitude and phase of a carrier to produce M-ary amplitude-phase ke,
{APK). A special form of this hybrid modulation is M-ary quadrature-amplitude mdg:
wlation (QAM), which has some attractive properfies. M-ary ASK is a special case o
M-ary QAM.

M-ary signaling schemes are preferred over binary signaling schemes for transmitting
digital information over band-pass channels when the requirement is to conserve hand.
widrh at the expense of increased power. In practice, we rarely find a communicatipy
channel that has the exact bandwidth required for transmitting the output of an inf;.
mation source by means of binary signaling schemes. Thus when the bandwidth of the
channel is less than the required value, we may use M-ary signaling schemes for maximup
efficiency. To illustrate the bandwidth-conservation capability of M-ary signaling schemes
consider the transmission of information consisting of a binary sequence with bit du[atim;
Ty. If we were to transmit this information by means of binary PSK, for example, v
would require a bandwidth that is inversely proportional to Ty However, if we take blocks
of 1 bits and use an M-ary PSK scheme with M = 2" and symbol duration T = #T,, the
bandwidth required is proportional to 1/nT,. This shows that the use of M-ary PSK enables
a reduction in transmission bandwidth by the factorn = log: M over binary PSK.

M-ary PSK and M-ary QAM are examples of linear modulation. However, they differ
from each other in one important respect: An M-ary PSK signal has a constant envelope,
whereas an M-ary QAM signal involves changes in the carrier amplitude. Accordingly,
M-ary PSK can be used to transmit digital data over a nonlinear band-pass chanrel,
whereas M-ary QAM requires the usc of a linear channel.

M-ary PSK, M-ary QAM, and M-ary FSK are commonly used in coherent systems,
Amplirude-shift keying and frequency-shift keying lend themselves naturally to use innon-
coherent systems whenever it is impractical to maintain carrier phase synchronization. But
in the case of phase-shift keying, we cannot have “noncoherent PSK” because the term
noncoherent means doing without carrier phase information. Iustead, we employ 2
“pseudo PSK” technique known as differential phase-shift keying {DPSK), which (ina
loose sense) may be viewed as the noncoherent form of PSK. In practice, M-ary FSK ant
M-ary DPSK are the commonly used forms of digical modulation in noncoherent systems.

@ PROBABILITY OF ERROR

A major goal of passband data transmission systems is the optimum design of the receiv
0 as to minimize the average probability of symbol error in the presence of additive H’Wf
Gaussian noise (AWGN). With this goal in mind, much of the material presented in this
chapter builds on the signal-space analysis tools presented in Chapter 5. Specifically,
the study of each system we begin with the formulation of a signal constellation and ﬂ"
construction of decision regions in accordance with maximum likelihood signal detecti®®
over an AWGN channel. These formulations ser the stage for cvaluating the proba

of symbol error P,. Depending on the method of digital modulation under study, the
evaluation of P, proceeds in one of two ways:

» In the case of certain simple methods such as coherent binary PSK and coheset!
binary FSK, exact formulas are derived for P..
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Returning to the functional model of Figure 6.2, the bandpass communication chan-
nel, coupling the transmitter to the receiver, is assumed to have two characteristics:

1. The channel is linear, with a bandwidth that is wide enough to accommodate the
transmission of the modulated signal s, (¢) with negligible or no distortion.

2, The channel noise w(t} is the sample function of a white Gaussian noise process of
zero mean and power spectral density N/2.

The assumptions made herein are basically the same as those invoked in Chapter § dealing
with signal-space analysis.

The receiver, which consists of a detector followed by a signal transmission decoder,
performs two functions:

1. It reverses the operations performed in the transmitter.
2. It minimizes the effect of channel noise on the estimate # computed for the trans-
mitted symbol m,.

| 6.3 Cohereni Phase-Shift Keying

With the background material on the coherent detection of signals in additive white Gaus-
sian noise that was presented in Chapter 5 at our disposal, we are now ready to study
specific passband data transmission systems. In this section we focus on coherent phase-
shift keying (PSK) by considering binary PSK, QPSK and its variants, and finish up with
M-ary PSK.

2 BINARY PHASE-SHIFT KEVING

In a coherent binary PSK system, the pair of signals ¢,(t) and (¢} used to represent binary
symbols 1 and 0, respectively, is defined by

si{t) = f;f cos(2mft) (6.8)
e oy
5:it) = \f'[% cos(2wfit + ) = —\Il'%%f cos(2amf.1) (6.9)

where 0 =1 = T, and E, is the transmitted signal energy per bit. To ensure that each
transmitted bit contains an integral number of cycles of the carrier wave, the carrier fre-
quency f; is chosen equal to #./T), for some fixed integer .. A pair of sinusoidal waves
that differ only in a relative phase-shift of 180 degrees, as defined in Eqautions (6.8) and
{6.9), are referred to as antipodal sigrals.
From this pair of equations it is clear thar, in the case of binary PSK, there is only
one basis function of unit cnergy, namely,
2
dilt) = [ Scos2mft), O0=¢<T, (6.10)
VT,

Then we may express the transmitted signals s,(2) and s,(¢) in terms of ¢ (£) as follows:
silt) = VE,¢ilt), 0=t<T, (6.11)

and
s{t) = ~VEé:lt), 0=i<T, {6.12)
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FiGURE 6.3 Signal-space diagram for coherent binary PSK system. The waveforms depicting the
transmitted signals s, (t) and s3(t), displayed in the inserts, assume 5, = 2.

A coherent binary PSK system is therefore characterized by having a signal space
that is one-dimensional (i.e., N = 1), with a signal constellation consisting of two message
points (i.c., M = 2). The coordinates of the message points are

il

S11

Ti
L s1(t)aft) dt
{6.13)
= +‘\/E

and

Ts
L s2(t)alt) dt
-V

The message point corresponding to s,(t) is located at sy, = +VE,, and the message point
corresponding to sx(t) is located at s3; = —\/E,, Figure 6.3 displays the signal-space &
agram for binary PSK. This figure also includes two inserts, showing example waveforms
of antipodal signals representing s, (¢} and s,{1). Note that the constellation of Figure 63
has minimum average ¢nergy.

Sn

{6.14)

Error Probability of Binary PSK
To realize a rule for making a decision in favor of symbol 1 or symbol 0, we 31.’l’ly
Equation (5.59) of Chapter 5. Specifically, we partition the signal space of Figure 6.3 int0
two regions:
» The sct of points closest to message point 1at +VE,.
s The set of points closest to message point 2 at =V Ep.
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This is accomplished by constructing the midpoint of the line joining these two message
points, and then marking off the appropriate decision regions. In Figure 6.3 these decision
regions are marked Z, and 7, according to the message point around which they are
constructed.

The decision rule is now simply to decide that signal s, (¢) (i.¢., binary symbol 1) was
transmitted if the received signal point falls in region Z,, and decide that signal sa(¢) (i.e.,
binary symbol 0} was transmitted if the received signal point falls in region Z,. Two kinds
of erroneous decisions may, however, be'made. Signal 5,(#) is transmitted, bur the noise is
such that the received signal point falls inside region Z, and so the receiver decides in favor
of signal 5,(t). Alternatively, signal s,(t) is transmitted, bur the noise is such thar the re-
ceived signal point falls inside region Z; and so the receiver decides in favor of signal sat).

To calculate the probabiliry of making an error of the first kind, we note from Figure
6.3 that the decision region associated with symbol 1 or signal s,(¢) is described by

ZpD<x < w

where the observable element x, is related to the received signal x{t) by

Th
X = L x(t)e,(t) dt {6.15)

The conditional probability density function of random variable X,, given that symbol 0
[i.e., signal s;(¢)] was transmitted, is defined by

1
Fxlx, |0} = m EXP[—'Nin (9 — 57.:]1]

== %exp[-l%{xl + V’E_;,}‘]
i I i)

The conditional probability of the receiver deciding in favor of symbol 1, given that symbol
(1 was transmitted, is therefore

(6.16)

o= _L Fx,(x:10) doxy

1 - 1 (6.17)
.. 1 — [F2
‘\/WUJ; cxp[ No (x, + VE,) ] dxy
Putting
z= L_ (x, + VEy) (6.18)

VN,
and changing the variable of integration from x, to z, we may rewrite Equation {6.17) in
the compact form

1o
P = Efmﬂpﬁ—z’} dz

Lol B
) i“'f‘(vfﬁ?)

(6.19}

where erfc(*) is the complementary ercor function.
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Consider next an error of the second kind. We note that the signal space of Figure
6.3 is symmetric with respect to the origin. It follows therefore that pqy, the conditigy,)
probability of the receiver deciding in favor of symbol 0, given that symbol 1 was trap,
mitted, also has the same value as in Equation (6.19).

Thus, averaging the conditional error probabilities pyy and poy, we find thar 4,
average probability of symbol error or, equivalently, the bit error rate for cobetent bingp,
PSK is (assuming equiprobable symbols) '

1 [E,
P, = E etfc(“fﬁ;) {6_20}

As we increase the transmitted signal energy per bit, E;, for a specified noise spectry|
density No, the message points corresponding to symbols 1 and 0 move further apars, ang
the average probability of error P, is correspondingly reduced in accordance with Equating
(6.20)), which is intuitively satsfying.

Generation and Detection of Coherent Binary PSK Signals

To generate a binary PSK signal, we see from Equations {6.8)-(6.10) that we haye
to represent the input binary sequence in polar form with symbols 1 and 0 represented by
constant amplitude levels of +V'E,, and —V/Ey, respectively. This signal transmission e
coding is performed by a polar nonreturn-to-zero {NRZ) level encoder. The resulting bi-
nary wave and a sinusoidal carrier & ,(¢), whose frequency f. = (nT) for some ficed
integer #,, are applied to a product modulator, as in Figure 6.4a. The carrier and the
timing pulses used to generate the binary wave are usually extracted from a common
master clock. The desired PSK wave is obtained at the modulator outpur.

To detect the original binary sequence of 1s and Us, we apply the noisy PSK signal
«{#) (at the channel output) to a correlator, which is.also supplied with a locally generated
coherent reference signal ¢ (t), as in Figure 6.4b. The correlaror output, x4, is compared
with a threshold of zero volts, If x; > 0, the receiver decides in favor of symbol 1. On the

By | Pome| ] et | S0

a 1 : 1

sequence | leval encoder b signal
h 'T‘ = s

2.
$il1 = V{'FJ cos (2af.t)

ter)

Correlatar

Ty Vx| pecision | [ Chosse1ifx; >0

*® I ot . -
H a edes Choose 0 if x, <0

r______
1
]
1
i
—_—

Threshold = 0
o]

FiGURE 6.4 Block diagrams for (a) binary PSK transmitter and (b) coherent binary PSK
receiver.
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2 QUADRIPHASE-SHIFT KEVING

The provision of reliable performance, exemplified by a very low probability of erey; is
one impertant goal in the design of a digital communication system. Another impran‘;m
goal is the efficient utilization of channel bandwidth. In this subsection, we study a bagg
width-conserving modulation scheme known as coherent quadriphase-shift keying, which
is an example of guadrature-carrier multiplexing.

In guadriphase-shift keying {QPSK), as with binary PSK, information carried by
transmitted signal is contained in the phase. In particular, the phase of the carrier eake;
on one of four equally spaced values, such as w/4, 3m/4, Sm/4, and 77/4. For this ser o
values we may define the transmitted signal as

2E ) - _
sit) = Q’;cm[lﬂ_ﬂtﬂ-(h- “Z]’ 0=t=T

0, elsewhere

(6.23)

where i = 1, 2, 3, 4; E is the transmitted signal energy per symbol, and T is rthe symbg)
duration. The carrier frequency £, equals n,/T for some fixed integer 7. Each possible
value of the phase corresponds to a unique dibit. Thus, for example, we may choosc the
foregoing set of phase values to represent the Gray-encoded set of dibits: 10, 00, 01, and
11, where only a single bit is changed from one dibit to the next.

Signal-Space Diagram of QPSK

Using a well-known trigonometric identity, we may use Equation (6.23) to redefine
the transmitted signal s,(#) for the interval 0 = ¢ = T in the equivalent form:

Y HE
st = "_f% cos[(Zi -~ 1}% ‘I.f% sin[{gi - 1);} sin(2mff)  (6.24]

where i = 1, 2, 3, 4. Based on this representation, we can make the following observations:

} cos(2wfit) —

& There are two orthonormal basis functions, ¢,(¢) and $,(#), contained in the expan-
sion of 5,(t). Specifically, ¢ (¢} and ¢ ,(t) are defined by a pair of quadrature carriers:

s
$ult) = Vf% cos(2nft), 0=¢=T (6.25)
2
dilt) = \!rll? sin(2mwf.t), 0=t=T (6.26)
TABLE 6.1 Signal-space
characterization of QPSK
Coordinates of
. Phase of Message Points
Gray-encoded ~ QPSK Signal  —————
Input Dibit fradians) Sty 5
10 4 +EZ -VER
a0 Imi4 —/E/d -wE/l
01 Sl —~VEZ +VER

11 74 +E2 +VER
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other hand, if x, < 0, it decides in favor of symbol 0. If x, is exactly zero, the receiver
makes a random guess in favor of 0 or 1.

Power Specira of Binary PSK Signals

From the modulator of Figure 6.44, we see that the complex envelope of a binary
PSK wave consists of an in-phase component only. Furthermore, depending on whether
we have symbol 1 or symbol 0 at the modulator inpur during the signaling interval
0 =t = T, we find that this in-phase component equals +g(i) or —g(t}, respectively,
where g{¢) is the symbol shaping function defined by

=
2E, N
glt) = \IFT,,’ t=pli (6.21)
0, otherwise

We assume that the input binary wave is random, with symbols 1 and 0 equally likely and
the symbols transmitted during the different time slots being statistically independent. In
Example 1.6 of Chapter 1 it is shown that the power spectral density of a random binary
wave so described is equal to the energy spectral density of the symbol shaping function
divided by the symbol duration. The energy spectral density of a Fourier transformable
signal g(¢) is defined as the squared magnitude of the signal’s Fourier transform. Hence,
the baseband power spectral density of a hinary PSK signal equals

- 2E sin’(aT,f)

= 2E, sinc}{T,f)

This power spectrum falls off as the inverse square of frequency, as shown in Figure 6.5.
Figure 6.5 also includes a plot of the baseband power spectral density of a binary

FSK signal, details of which are presented in Section 6.5, Comparison of these two spectra
is deferred to that section.

Sslf)

1.0

Binary PSK

Dalta function
(part of FSK spectrun)

| Binary
FSK

Nermalized power spactral density, $,(FUI2E,
(=)
[4,]

I
a Q.5 1.0 1.5 2.0
Normalized frequency, #T},

Fieure 6.5 Power spectra of binary PSK and FSK signals.
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FIGURE 6.6 Signal-space diagram of coherent QPSK system.

# There arc four message points, and the associated signal vectors are defined by

V’Eccs([li =1} %r)
i PS8 (6.27)

~\/§sin(r2f— 1}1—')

The elements of the signal vectors, namely, s;; and s,,, have their values summarized
in Table 6.1. The first two columns of this table give the associated dibit and phase
of the QPSK signal,

Accordingly, a QPSK signal has a two-dimensional signal constellation (ie., N = 2} and
four message poiats (i, M = 4} whose phase angles increase in a counterclockwise di-
rection, as illustrated in Figure 6.6. As with binary PSK, the QPSK signal has minimum
average energy.

> EXAMPLE 6.1

Figure 6.7 illustrates the sequences and waveforms involved in the generation of a QPSK
signal, The input binary sequence 01101000 is shown in Figure 6,74, This sequence is divided
into two other sequences, consisting of odd- and even-numbered bits of the input sequence.
These two sequences are shown in the top lines of Figures .76 and &.7¢. The waveforms
representing the two components of the QPSK signal, namely, 5,164 (f} and 5262}, are also
shown in Figures 6.7b and 6,7¢, respectively. These two waveforms may individually be
viewed as examples of a binary PSK signal. Adding them, we get the QPSK waveform shown
in Figure 6.7d.

To define the decision rule for the detection of the transmitted dara sequence, we par-
tition the signal space into four regions, in accordance with Equation (5.59) of Chapter 5.
The individual regions are defined by the set of points closest to the message point represented
by signal vectors s, sy, 53, and s,. This is readily accomplished by constructing the perpen-
dicular bisectors of the square formed by joining the four message points and then marking
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FIGURE 6,7 (a) Input hinary sequence. (b) Odd-numbered bits of input sequence and assaciated
hinary PSK wave. (c) Even-numhered hits of input sequence and associzted binary PSK wave,
(d) OPSK waveform defined as s(t) = 5,14, (f) + 5200208

off the appropriate regions, We thus find that the decision regions are quadrants whose vertices
coineide with the origin. These regions are marked Zy, Z;, Zs, and Z,, in Figure 6.6, according
to the message point around which they are constructed. 4

Error Probability of QPSK
In a coherent QPSK system, the received signal x(z) is defined by

0=t=T

[6.18)
i=1,234

x(t) = s;(t) + wiz), {

where (¢} is the sample function of a white Gaussian noise process of zero mean and
power spectral density No/2. Correspondingly, the ohservation vector x has two elements,
x, and x;, defined by

"
X = L x(t)p(r) dt

- Ecns[tzi - 1) }:] + w, (6.29)

|E
=

v

(STl

+ 1wy
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and
(T

= |, *ne2t) dt

Ry
!

-AE sin[(li ~1) %’] + 1w, (6.30)

+Y;2 + s

Thus the observable elements x, and x; are sample values of independent Gaussian randem
variables with mean values equal to =VE2 and VE/Z, respectively, and with a common
variance equal to N/2.

The decision rule is now simply to decide that s;{#) was transmitted if the received
signal poinr associated with the observation vector x falls inside region Z,, decide that
sa(t] was transmitted if the reccived signal point falls inside region Z,, and so on, An
erroneous decision will be made if, for example, signal sg(z) is transmitted but the noise
w(t) is such that the received signal point falls outside region Z,,

To calculate the average probability of symbol error, we note from Equation (6.24)
that a coherent QPSK system is in fact equivalent to two coherent binary PSK systems
working in parallel and using two carriers that are in phase quadrature; this is merely a
statement of the quadrature-carrier multiplexing property of coherent QPSK. The in-phase
channel output »; and the quadrature channel output x; (i.e., the two elements of the
observation vector x) may be viewed as the individual outputs of the rwo coherent binary
PSK systems. Thus, according to Equations (6.29} and (6.30), these two binary PSK sys-
tems may be characterized as follows:

¥ The signal energy per bit is E/2.
» The noise spectral density is Ny/2.

Hence, using Equarion (6.20) for the average probability of bit error of a coherent binary
PSK system, we may now state that the average probability of bit error in ezch channel of
the coherent QPSK system is
1 75
P =erfc| [—
2 ('\F Ny )
. o 6.31)
-_— | MR
2 “{c(\i ZNo)
Another important point to note is that the bit errors in the in-phase and quadrature
channels of the coherent QPSK system are statistically independent. The in-phase channel
makes a decision on one of the rwo bits constituting a symbol (dibit) of the QPSK signal,
and the quadrarure channel takes care of the other bit. Accordingly, the average probability
of a correct decision resulting from the combined action of the two channels working
together is
Py
1

Bo=(1- P
E 2
- E El'fc(\‘{z—m)} {6.32)

i _

et anl LB\ 5 Bl B
=1 erfc(\/zNo) + r erfc (\leo)
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bandwidth. For a prescribed performance, QPSK uses channel bandwidth better than bi-
nary PSK, which explains the preferred use of QPSK over binary PSK in practice.

Generation and Detection of Coherent QPSK Signals

Consider next the generation and detection of QPSK signals, Figure 6.84 shows a
block diagram of a rypical QPSK transmitter. The incoming binary data sequence is first
transformed into polar form by a nonreturn-to-zero level encoder. Thus, symbols 1 and 0
are represented by +V/E, and ~V/E,, respectively. This binary wave is next divided by
means of a demultiplexer into two separate binary waves consisting of the odd- and even-
numbered input bits. These two binary waves are denoted by a1(t) and a3(t). We note that
in any signaling interval, the amplitudes of a,(i} and a,(t) equal s;; and s, respectively,
depending on the particular dibit that is being transmitted. The two binary waves a,it)
and a,(t) are used to modulate a pair of quadrature carriers or orthonormal basis functions:
&, (1) equal to VZIT cos(2wf.t) and ¢ () equal to VT sin[2mf.t). The result is a pair of

agith
1 {;)
[ &yl = 2T cost2mfn)
Birary Palar nonreturn- | CPSK
data to-zero level  ——3=  Demultiplaser z et
sequence encoder + e
i s
di(f) = f 2T siniZ2arr,n)
[}
Threshald = 0
¥ "1 | Declsion
.’; & device
i) In-phase channel
Received TR EAaTne Estimate of
signal Multiplexer = transmitied binary
(i} sanuence
; | T & £3 | Dacizion
: : | 4o | device
s
Thrashold = 0
Quadrature channel

Ho)
FIGURE 6.8 Block diagrams of (2) QPSK transmitter and (k) coherent QPSK receiver.
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binary PSK signals, which may be detected independently due to the orthogonality of é
and g5(¢). Finally, the two binary PSK signals are added to produce the desired Qplg'k
signal.

The QPSK receiver consists of a pair of correlators with a commeon input and suppligg
with a locally generated pair of coherent reference signals ¢ ,{t) and ¢(t), as in Figugs
6.8b. The correlator outputs x; and xs, produced in response to the received signal ),
are each compared with a threshold of zero. If x, > 0, a decision is made in faver of
symbol 1 for the in-phase channel cutput, but if x; < 0, a decision is made in favgy of
symbol 0. Similarly, if x, > 0, a decision is made in favor of symbol 1 for the quadratye
channel output, but if x, < 0, a decision is made in favor of symbol 0. Finally, these two
binary sequences at the in-phase and quadrature channel outputs are combined in a .
tiplexer to reproduce the original binary sequence at the transmitter input with the mig;.
mum probability of symbol error in an AWGN channel.

Pawer Specira of QPSK Signals

Assume that the binary wave at the modulator input is random, with symbols 1 ang
0 being equally likely, and with the symbols transmitred during adjacent time slots being
statistically independent, We make the following observations pertaining to the in-phase
and guadrature components of a QPSK signal:

1. Depending on the dibit sent during the signaling interval =T, = t = T;, the in-phage
component equals +g{t) or —g(t), and similarly for the quadrature component. The
g(t) denotes the symbol shaping function, defined by

—

=
git) =1yT’

0, otherwise

D=t=T (6.39

Hence, the in-phase and quadrature components have a common power spectral
density, namely, E sinc*{Tf).

Normalized powar spactral dansity, SplFIfAE,

o 0.25 0.5 0.75 1.0
Normalized frequency, /T,

FIGURE 6.9 Power spectra of QPSK and MSK signals.
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2 BInary FSK

In a binary FSK system, symbols 1 and 0 are distinguished from each other by transmitting
one of two sinusoidal waves thart differ in frequency by a fixed amount. A typical pair of
sinusoidal waves is described by

I’E:E_ ==
- [\f?: cosRuft), 0=t=T, (6.86)

0, elsewhere

where i = 1, 2, and E, is the transmitted signal energy per bit; the transmitted frequency
is

no+i
fl-— T-*‘|

Thus symbol 1 is represented by s,(t), and symbol O by s3(t). The FSK signal described
here is known as Sunde’s FSK, It is a continuous-phase signal in the sense thar phase
continuity is always maintained, including the inter-bit switching times. This form of dig-
ital modulation is an example of continuous-phase frequency-shift keying (CPFSK), on
which we have more to say later on in the section.

From Equations (6.86) and (6.87), we observe directly that the signals s,(t) and s.(¢)
are orthogonal, but not normalized to have unit energy. We therefore deduce that the most
useful form for the set of orthonormal basis functions is

for some fixed integer#, and i = 1, 2 (6.87)

2
i) = \‘ﬁ cos(2mfit), 0=t=T, (6.88)
0, elsewhere

where i = 1, 2. Correspondingly, the coefficient s; for i = 1, 2, and ;j = 1, 2 is defined by

Ty
Sy = L si{1)d,(s) dt

= ITb }@ cos{2afit) E cos(2mfi) dt (6.89)
o VT, ' \JTb ! )

_ {«E,, imj
0, i

Thus, unlike coherent hinary PSK, a coherent binary FSK system is characterized by having
a signal space that is two-dimensional {i.e.,, N = 2} with two message points (i.e., M = 2},
as shown in Figure 6.25, The two message points are defined by the

-
5 = [\ f"] (6.90)
and
0
[

with the Euclidean distance berween them equal to V2E,. Figure 6.25 also includes a
couple of inserts, which show waveforms representative of signals s;(1) and s,(2).
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FIGURE 6.25  Signal-space diagram for binary FSK system. The diagram also includes two
inserts showing example waveforms of the two modulated signals 5,(r) and s,(t}.

Error Probability of Binary FSK
The observation vector x has two elements x; and x; that are defined by, respectively,

Ty
X = I x(thep (t} dt (6.32)

o
and

Ts

= L x(2)gha(t) dt (6.93)

where x(t} is the reccived signal, the form of which depends on which symbol was trans
mitted. Given that symbol 1 was transmitred, x(r) equals s(z) + w(t), where wit) is the
sample function of a white Gaussian noise process of zero mean and power spectral density
Ny/2. If, on the other hand, symbol 0 was transmitted, xit) equals st} + wt). i
Now, applying the decision rule of Equation (5.59), we find that the observanon
space is partitioned into two decision regions, labeled Z; and Z, in Figure 6.25. The
decision boundary, separating region Z, from region Z, is the perpendicular bisector ©
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the line joining the two message points. The receiver decides in favor of symbol 1 if the
received signal point represented by the observation vector x falls inside region Z,. This
occurs when x, > x,. If, on the orher hand, we have x, < x,, the received signal point
falls inside region Z;, and the recciver decides in favor of symbol 0. On the decision
boundary, we have x; = x., in which case the receiver makes a random guess in favor of
symbol 1 or 0.

Define a new Gaussian random variable ¥ whose sample value y is equal to the
difference between x,; and x; that is,

Yy =% — X% {6.94)

The mean value of the random variable ¥ depends on which binary symbol was trans-
mitred. Given that symbol 1 was transmitted, the Gaussian random variables X, and X,,
whose sample values are denoted by x, and x;, have mean values equal to VE, and zero,
respectively. Correspondingly, the conditional mean of the random varizble ¥, given that
symbaol 1 was transmitted, is

E[Y|1] = E[X,|1] - E[X;]1]

e (6.95)

On the other hand, given thar symbol 0 was transmitted, the random vatiables X, and X,
have mean values equal to zero and VE,, respectively. Correspondingly, the conditional
mean of the randem variable Y, given that symbol 0 was transmitted, is
E[¥]0] = E[X, 0] — E[X|0]
_'\,.?E
The variance of the random variable Y is independent of which binary symbol was trans-
mitted. Since the random variables X, and X, are statistically independent, each with a
variance equal to Ny/2, it follows that
var[Y] = var[X;] + var[X;]
= N,

Suppose we know that symbol 0 was transmitted, The conditional probability density

function of the random variable Y is then given by

[_ wﬂ]

(6.98)

i

(6.97)

. — (6.98)

Q) = ——
fY[)’l ‘J ‘\,"‘IZ#N[]

2N,

Since the condition x; > x;, or equivalently, y > 0, corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional prebability of error, given
that symbol 0 was transmitted, is

1o = Ply = 0|symbol 0 was sent)

=fu fuly|0) dy (6.99)
o d f _r+ VEF]
T V2N b P 2N, 4

}r+\’fp,
T =

6.100
VIN, { J
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Then, changing the variable of integration from y to 2, we may rewrite Equation (6 gg
as follows: )

1 3
pm—v,;_[vmnexp{ z%) dz

o B =
2 T 2N,

Similarly, we may show the po, the conditional probability of error given that symbg) |
was transmitted, has the same value as in Equation (6.101}. Accordingly, averaging P

and poy, we find that the average probability of bit error ot, equivalently, the bit error gy,
for coberent binary FSK is (assuming equiprobable symbols)

=1
i Ea

1
P, = E CIfC(\E'ZNU) [5.101}.

Comparing Equations (6.20) and (6.102), we sec that, in a coherent binary F§g
system, we have to double the bit energy-to-noise density ratio, E,/Ng, to maintain the
same bit error rate as in a coherent binary PSK system. This result is in perfect accord with
the signal-space diagrams of Figures 6.3 and 6,25, where we see that in a binary PSK
system the Euclidean distance between the two message points is equal to 23/Ey, wherezs
in a binary FSK system the corresponding distance is V/2E,. For a prescribed E,, the
minimum distance d,g. in binary PSK is therefore W2 times that in binary FSK. Recal
from Chapter 5 that the probability of error decreases exponentially as di;,, hence the
difference between the formulas of Equations (6.20} and (6.102).

Generation and Detection of Coherent Binary FSK Signals

To generate a binary FSK signal, we may use the scheme shewn in Figure 6.264. The
incoming binary data sequence is first applied to an on—off level encoder, at the outputof
which symbol 1 is represented by a constant amplitude of E, volts and symbol [ is
represented by zero volts. By using an inverter in the lower channel in Figure 6.26a, wein
effect make sure that when we have symbol 1 at the input, the oscillator with frequency
£, in the upper channel is switched on while the oscillator with frequency f; in the jower
channel is switched off, with the result that frequency f, is transmirted. Conversely, when
we have symbol 0 at the input, the oscillator in the upper channel is switched off and the
oscillator in the lower channel is switched on, with the result that frequency fa is trans
mitted. The two frequencies f; and f, are chasen to equal different integer multiples of the
bit rate 1/T, as in Equation {6.87).

In the transmitter of Figure 6.264, we assume that the two oscillators are syachro-
nized, so that their outputs satisfy the requirements of the two orthonormal basis fnctiens
@ ,(f) and &3(t), as in Equation (6.88). Alternatively, we may use a single keyed (voltage
controlled) oscillator. In either case, the frequency of the modulated wave is shifted with
a continuous phase, in accordance with the inpur binary wave,

To detect the original binary sequence given the noisy received signal x(¢), w¢ my
use the receiver shown in Figure 6,26b. It consists of two correlators with a commoninpsh
which are supplied with locally generated coherent refercnce signals @, (t) and dalfl
correlator outputs are then subtracted, one from the other, and the resulting differenca
is compared with a threshold of zero volts. lf y > 0, the receiver decides in favor of 1 Os
the other hand, if ¥ < 0, it decides in favor of 0. If y is exactly zero, the receiver makes?
random guess in favor of 1 or 0.
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FiGuRE 6.26 Block disgrams for () binary FSK transmitter and (k) coherent binary FSK
receiver.

Pawer Spectra of Binary FSK Signals

Consider the case of Sunde’s FSK, for which the two transmitted frequencies f; and
f2 differ by an amount equal to the bit rate 1/T, and their arithmetic mean equals the
nominal carrier frequency f; phase continuity is always maintained, including inter-bit
switching times. We may express this special binary FSK signal as follows:

_ [2E, t
sit) = ‘\JE- ccs(er_]‘;r =+ ﬁ)’ D=t=T, (6.103)
and using a well-known trigonometric idenrity, we get
RE, hE,
sit) = I"@ n:os(i‘ E) cos{2mwfit) — (s sin(tlr) sin{27f)
L o e L (6.104)
'E cos(ﬂ) (2mfit) = ,l'2_b}, sin(ﬂr) sin(2af.t) ‘
=[5 cos| 0= | cos2af. — sin| — 2
VT, “\T, VI AT

In the last line of Equation (6.104), the plus sign corresponds to transmitting symbol 0,
and the minus sign corresponds to transmitting symbol 1. As before, we assume that the
symbaols 1 and 0 in the random binary wave ar the modulator inpur are equally likely, and
that the symbols transmitted in adjacent time slots are starisrically independent. Then,



