Real Time Operating Systems

Abstract View of Components of an
Operating System

* An operating system is a program that acts as an interface between the user and the

computer hardware and controls the execution of all kinds of programs.

Compiler lext Editor Assambler Database Systam
SYSTEM AND APPLICATION PROGRAMS
-

OPERATING SYSTEM

COMPUTER
HARDWARE

Structure of Operating System:

APPLICATION PROGRAMS
SYSTEM PROGRAMS
Q

SOFTWARE

HARDWARE

Operating System Architecture

Structure of Operating System:

The structure of OS consists of 4 layers:
Hardware Hardware consists of CPU, Main memory, I/O Devices, etc,

Software (Operating System) Software includes process management routines, memory

management routines, 1/0O control routines, file management routines.
System programs This layer consists of c?ﬁ*‘npilers, Assemblers, linker etc.
Application programs This is dependent on users need.

Ex. Railway reservation system, Bank database management

Goals / Function of Operating system

Following are some of important functions of an operating System:
Execute user programs and make solving user problems easier.
Make the computer system convenient to use.

Use the computer hardware in an efficient manner.

Memory Management

Processor Management B

Device Management

File Management

Security

Control over system performance

Job accounting

Error detecting aids

Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main Memory. Main

memory is a large array of words or bytes where each word or byte has its own address.

Main memory provides a fast storage that can be access directly by the CPU. So for a

program to be executed, it must in the main memory:.
Operating System does the following acti¥ities for memory management:

Keeps tracks of primary memory i.e. what part of it are in use by whom, what part are

not in use.
In multiprogramming, OS decides which process will get memory when and how much.
Allocates the memory when the process requests it to do so.

De-allocates the memory when the process no longer needs it or has been terminated

Managing Strategy

Explanation

Fixed-blocks Allocation .

Dynamic-blocks Allocalion/

Dynamic Page-Allocation
Dynamic Data Memory Allocation

Dynamic Address-relocation

Multiprocessor Memory Allocation

Memory address space is divided into blocks with processes having
small address spaces getting a lesser number of blocks and processes
with big address spaces getting a larger number of blocks.
Memory address space is divided into blocks with processes having
small address spaces getting a lesser number of blocks and processes,
with big address spaces getting a larger number of blocks to start with,
The memory manager later allocates variable size blocks (in units of say
64 or 256 bytes) dynamically allocated from a free (unused) list of
memory-blo@}i description table at the different computation phases
of a process. V-
Memory has fixed sized blocks called pages and the memory manager
allocates the pages dynamically with a page descriptor table.
The manager allocates memory dynamically to different data structures
like nodes of a list, queues, and stacks.
The manager dynamically allocates the addresses initially bound to the
relative addresses after adding the relative address with relocation
register. The memory manager now dynamically changes only the
contents of a relocation register. It takes into account a limit defining
register so that the relocated addresses are within the limit of available
addresses. This is also called run-time dynamic address binding.

. . The manager adopts an allocation
strategy cither the memory is shared with tight coupling between two or

more processors or shared with loose coupling or there is a multi
scgmented allocations.

Processor Management

In multiprogramming environment, OS decides which process gets the
processor when and how much time. This function is called process

scheduling.
Operating System does the followiQ) activities for processor management.

Keeps tracks of processor and status of process. Program responsible for

this task is known as traffic controller.
Allocates the processor (CPU) to a process.

De-allocates processor when processor is no longer required.

Process Creation

At reset of processor in a computer system, an OS is initialized first and then a process,
which can be called initial process, is created.

Initialisation of OS means enabling the use of OIS functions, which includes the function to
create the process.

Then the OS is started and runs the initial process.

Processes can be created hierarchically. 2!

The initial process creates subsequent processes.

Creation of a process means specifying the resources for the process and address spaces

(memory block) for the created process, stack, data and heap and placing the initial
information at a PCB.

The process manager allocates a PCB when it creates the process and later manages it.
PCB (Process Control Block) is a process descriptor used by process manager.
A PCB describes the following.

(1) ‘Context [Processor status word, program counter, stack pomnter and other CPU e Bisters
instant of last instruction run executed when the process was left and processo, SWixg h:td
lo

other process)

(ii) Process stack pointer . ' .
(iii) Current state [Is it created, activated or spawned? Is it running? Is it blocked?)

(iv) Addresses that are allocated and that are presently in use
(v) Pointer for the parent process in case there exists a hierarchy of the processes

(vi) Pointer to a list of daughter processes (processes lower in the hierarchy)

(vii) Pointer to a list of resources, which are usable (consumed) only once. For example, input da
memory buffer or pipe, mailbox message, semaphore. [There may be producers and consumer
of these resources.]

(viii) Pointer to a list of resource-types usable more than once [A resource type example is a memory
block. Another example is an IO port.] Each resource type will have a count of these types. For
example, the number of memory blocks or the number of IO ports.

(ix) Pointer to queue of messages. It is considered as a special case of resources that are usable
once. It is because messages from the OS also queue up to be controlled by a process.

(x) Pointer to Access-permissions descriptor for sharing a set of resources globally. and with
another process.

(xi) ID by which identification is made by the process manager

Device Management

OS manages device communication via their respective drivers.
Operating System does the following activities for device management:

Keeps tracks of all devices. Program responsible for this task is known as

the 1/0 controller. Y
Decides which process gets the device when and for how much time.
Allocates the device in the efficient way.

De-allocates devices.

Device manger manages the physical as well as virtual devices like the

pipes and sockets through a common strategy.

Device management has three standard approaches to the three types

device drivers:
(i) Programmed 1/Os by polling the service need from each device.
(i1) Interrupt(s) from the device drivers ISR and

(i11) Device uses DMA operation used by the devices to access the

memory. Most common is the use of device driver ISRs

The functions of device manager are given
below:

Device Detection and Addition

Device Deletion

Device Allocation and Registration

Detaching and DeregistrationRestricting

Device to a specific process Q

Device Sharing

Device control

Device Access Management

Device Buffer Management

Device Queue, Circular-queue or blocks of queues Management
Device drivers updating and upload of new device-functions

Backup and restoration

OS command functions for a device:

create &open-create is for creating and open is for creating(if not created earlier) and

for configuring and initializing the device
write —write into the device buffer or sending output from the device
read -write from the device buffer or reading input from the device

close &delete —close is for deregistering%e device from the system and delete id for

close(if not closed earlier) and for detaching the device

File Management

A file system is normally organized into directories for easy navigation and

usage. These directories may contain files and other directions.
Operating System does the following activities for file management:

Keeps track of information, locatioiy uses, status etc. The collective

facilities are often known as file system.
Decides who gets the resources.
Allocates the resources.

De-allocates the resources.

A file is a named entity on a magnetic disc, or optical disc, or system memory or

memory stick

File contains the data, characters and text.

Different abstractions of a file:

A file may be a named entity that is a structured record named entity as on a disk,

having random access in the system

May be a structured record on a RAM analogous to a disk and may also be either

separately called as ‘RAM disk’or simply, as a ‘file’ itself (virtual device).
May be an unstructured record of bits or bytes

A file device may be a pipe -like device

* File organization in a system

* File is organized in a way according to a file system, which has set of command

functions for operations on the file.

« Table below gives these functions for POYIX file system.

Command in POSIX Action(s)

open Functions for creating the file

write Writing the file

read Reading the file

Iseek (List seek) Setting the pointer for the appropriate place in the file for the next read or write
or set the file pointer

dose Closing the file

» Afile system has a data structure called file descriptor as per the table below:

File-Descriptor

Meaning(s)

Identity
Creator or Owner
State

Locks and Protection fields

file Info

Sharing Permission
Count
Storing Media Details

Name by which a file is identified] in the application
Process or program by which it was created :
A state can be ‘closed’, ‘archived’ (saved), ‘open executing file’ or ‘open

file for additions’. ’
O RDWR file opu'&}s with read and write permissions, O RDONLY file

opens with read only permissions, O_ WRONLY file opens with write
only permissions.

Current length, when created, when last modified, when last accessed
Can be shared for execution, reading, or writing

Number of Directories referring to it

Blocks transferable per access

Other Important Activities

Following are some of the important activities that Operating System does.

Security -- By means of password and similar other techniques, preventing unauthorized

access to programs and data.

Control over system performance -- Recording delays between request for a service

and response from the system. W
Job accounting -- Keeping track of time and resources used by various jobs and users.

Error detecting aids -- Production of dumps, traces, error messages and other
debugging and error detecting aids.

Coordination between other software and users -- Coordination and assignment of
compilers, interpreters, assemblers and other software to the various users of the

computer systems.

Operating System handles

Memory Addressing & Management

Interrupt & Exception Handling

Process & Task Management

File System ¢
Timing

Process Scheduling & Synchronization

Examples of Operating Systems

RTOS — Real-Time Operating System
Single-user, Single-task: example PalmOS
Single-user, Multi-task: MS Windows and MacOS

Multi-user, Multi-task: UNIX

Micro C/OS-11 RTOS (MUCOS)

One of the popular RTOS for an embedded system is uC/OS-II.
uC/OS-11 is a free ware for non commercial use.

J. Labrosse designed it in 1992

uC/OS-11 name derives from MicroController Operating System
Preemptive RTOS

Multitasking

Deterministic

Portable as ROM image

Scalable —only needed OS functions become part of application code.

Different Platforms support

System Level Functions

void OSlInit (void)- is used to initiate the OS. Use is compulsory before calling any OS

kernel functions

void OSStart (void)-is used to start the initiated operating system and created tasks Its

use is compulsory for the multitasking OS kernel operations

void OSIntEnter (void) -used at the start of ISR .For sending a message to RTOS
kernel for taking control.compulsory to let OS kernel control the nesting of the ISRs in

case of occurrences of multiple interrupts of varying priorities

void OSIntEXxit (void) -used just before the return from the running ISR — For sending

a message to RTOS kernel for quitting control of presently running ISR

OS ENTER_CRITICAL —is used at the start of the ISR. Macro to disable interrupts
before a critical section .1t is for sending a message to RTOS kernel for disabling

interrupts .

OS _EXIT _CRITICAL — Macro to enable interrupts. [ENTER and EXIT functions
form a pair in the critical section] is used just before the return from the critical section.

It is for sending a message to RTOS kernel for quitting control from the section .

void OSTicklInit (void) —is used to initiate the system clock ticks and interrupts at
regular intervals as per OS_TICKS_PER_SEC predefined when defining configuration
of MUCQOS

Task Service Functions

« Service functions mean the functions to task create, suspend and resume, and time

setting and time retrieving functions.

« 1. Function for Creating a task:

* Unsigned byte OSTaskCreate(void(*task)(void*taskPointer),void*pmdata,OS_STK*taskStackPointer,
unsigned byte taskPriority)

*taskPointer — task is a pointer to the task code
*pmdata— is a pointer to an argument that is passed to your task when it starts executing,
*taskStackpointer -is a pointer to the top of the stack that is assigned to the task

task priority- is the desired task priority.

This function returns:

OS_NO_ERR when creation succeeds

OS_PRIO_EXIST if priority value that passed already exist

OS_NO_ MORE_TCB when no more memory block for task control is available

OS_PRIO_INVALID if the priority value that is passed is more than the given range

unsigned byte OSTaskSuspend (unsigned byte taskPriority)

— Called for blocking a task

Task priority -Priority of the task to be suspended

This function returns:

OS_NO_ERR when blocking succeeds

OS TASK_SUSPEND_PRIOQO if priority value that passed already does not exist
OS_TASK SUSPEND _IDLE if attempting to suspend an idle task that is illegal

OS_PRIO_INVALID if the priority value that is passed is more than the given range

unsigned byte OSTaskResume (unsigned byte taskPriority)

— Called for resuming a blocked task

Task priority -Priority of the task to be resumed

This function returns:

OS_NO_ERR when unblocking succeeds

OS_TASK_RESUME_PRIO if priority value that passed already does not exist
OS_TASK NOT_SUSPENDED if attempting to resume a not suspended task
OS_PRIO_INVALID if the priority value that is passed is more than the given range
Function void OSTimeSet(unsigned int count)

— is used for setting the system clock

Memory Allocation Related Functions

Creating Memory blocks at a memory address:

OS_ MEM *OSMemCreate (void *memaddr, MEMTYPE numBlocks, MEMTYPE

blocksize, unsignedbyte *memErr)

Is an OS function which partitions memory from an address with partitions in the block
the beginning address of the memory partition,

the number of blocks to be allocated from this partition,

the size (in bytes) of each block

and a pointer to a variable that contains an error code.

Memory Partition

Start address —

Par-titionrmn

Block

Multiple Memory Partition

‘artition #1 Partition #2 Partition H3 Partition #4

This function returns:
a NULLpointer if OSMemCreate() fails
on success returns a pointer to the allocated memory control block

MEMTYPE is the data type according to the memory whether 16 bit or 32 bit memory

address are there.

Obtaining a memory block at a memory address

void *OSMemGet (OS_MEM *memCBPointer, unsignedbyte *memErr)
Is to retrieve a memory block from the partition created earlier.

This function returns:

a pointer to the memory control block for the partitions it returns NULL if no block

exists there

Obtaining Status of a memory partition

Unsigned byte OSMemQuery (OS_MEM *memCBPointer, OS. MEMDATA

*memData)
Is to query and return error code and pointers for the memory partition

Is used to obtain information about a memory partition. Specifically, your application
can determine how many memory blocks are free, how many memory blocks have been

used (i.e., allocated), the size of each memory block (in bytes), etc
This function returns:

an error code which is an unsigned byte .the code is OS_NO_ERR=1 when querying

succeeds else 0

Returning a memory block into a partition

Unsignedbyte OSMemPut (OS_ MEM *memCBPointer, void *memBlock)
the address of the memory control block (memCBPointer) to which the memory
block belongs (memBlock).

This function returns:

OS_NO_ERR when the memory block returned to the memory partition

OS_MEM_FULL when the memory block cannot be put into the partition as it is full

Semaphore Functions

Function:
OS_Event OSSemCreate (unsigned short semVal)
To create and initialize semaphores
then attempts to obtain an ECB
If there is an ECB available, the ECB type is set to OS_EVENT_TYPE_SEM
This function returns:
returns a pointer to the ECB.

If there are no more ECBs, OSSemCreate() returns a NULL pointer.

void OSSemPend (OS_Event *eventPointer, unsigned short timeOut, unsigned byte

*SemErrPointer)
Is for letting a task wait till the release event of a semaphore
To check whether semaphore is pending or not pending (0 or >0).
If pending (=0), then suspend the task till >0 (released).
If >0, decrement the value of semaphore and run the waiting codes
This function returns:
OS_NO_ERR when the semaphore search succeeds
OS_TIMEOUT if the semaphore did not release during the ticks defined for the timeout

OS_ERR_EVENT _TYPE, if *eventPointer is not pointing to the semaphore.

unsigned short OSSemAccept (OS_EVENT *eventPointer)

then gets the current semaphore count to determine whether the semaphore is available
(i.e., a nonzero value).

The count is decremented only if the semaphore was available
To check whether semaphore value > 0 and if yes, then retrieve and decrement. Used

when there is no need to suspend a task, only decrease it to O if value is not already zero

unsigned byte OSSemPost (OS_EVENT *eventPointer)
then checks to see if any tasks are waiting on the semaphore

If there are no tasks waiting on the semaphore, the semaphore count simply gets

incremented
Increment makes the semaphore again not pending for the waiting tasks
This function returns:
OS_NO_ERR when the semaphore signalling succeeds
OS_SEM_OVF, when semVal overflows .

OS_ERR_EVENT _TYPE, if *eventPointer is not pointing to the semaphore

unsigned byte OSSemQuery (OS_EVENT *eventPointer, OS_ SEM_DATA

*SemData)

-To get semaphore information
0OSSemQuery() then copies the wait list from the OS_EVENT structure to
the OS_SEM_DATA structure.

Finally, OSSemQuery() copies the current semaphore count from
the OS_EVENT structure to the OS_SEM_DATA structure.

OS_SEM_DATA contains the current semaphore count and the list of tasks waiting on
the semaphore.

