

Programming with JAVA – Overview of Java Language, Classes Objects and
Methods, Method Overloading and Inheritance, Overriding Methods, Final
Variables and Methods. Interfaces, Packages, Multithreaded programming,
Managing Errors and Exceptions.

PROGRAMMING WITH JAVA

JAVA is an object oriented language developed by Sun Microsystems of US
A in 1991

Features of JAVA

1. Compiled and Interpreted:- Java compiler translates source code into
bytecode instructions. Bytecode are not machine instructions and in the
next stage, Java interpreter generates machine code that can be directly
executed by the machine that is running the Java program. We can thus say
that Java is both a compiled and an interpreted language.

2. Platform – Independent:- Java programs can be easily moved from one
computer system to another, anywhere and anytime. Changes and upgrades
in operating systems, processors and system resources will not force any
changes in Java program. Java ensures portability in two ways. First, Java
compiler generates bytecode instructions that can be implemented on any

machine. Secondly, the sizes of the primitive data types are machine
independent.

3. Object – Oriented:- Java is a true object – oriented language. All program
code and data reside within objects and classes. Java comes with an
extensive set of classes, arranged in packages that we can use in our
programs.

4. Robust and Secure :- Robust simply means strong. Java puts a lot of
emphasis on early checking for possible errors, as Java compilers are able to
detect many problems that would first show up during execution time in
other languages. Java has the strong memory allocation and automatic
garbage collection mechanism. It provides the powerful exception

handling and type checking mechanism as compare to other 		 languages.

Compiler checks the program whether there any error and interpreter checks
any run time error and makes the system secure from crash. All of the above
features make the Java language robust.

5. Distributed:- Java is designed as a distributed language for creating
applications on networks. It has the ability to share both data and programs.
Java applications can open and access remote objects on internet as easily
as they can do in local system.

6. Simple :- Java is a simple language. Many features of C++ that are either
redundant or

sources of unreliable code are not part of Java. For example, Java does not
use pointers, preprocessor header files etc. It also eliminates operator
overloading and multiple inheritance.

7. Multithreaded:- Multithreaded means handling multiple tasks
simultaneously. Java supports multithreaded programs. This means that we
need not wait for the application to finish one task before beginning another.

8. High Performance :- Java architecture is designed to reduce overheads
during runtime. The incorporation of multithreading enhances the overall
execution speed of Java programs.

9. Extensible :- Extensible code means java provides inheritance and with
the help of inheritance we reuse the code that is pre-defined and also uses all
the built in functions of java and classes.

10. Dynamic:- Java is a dynamic language. Java is capable of dynamically
linking in new class

OVERVIEW OF JAVA LANGUAGE

We can develop two types of Java programs :

1. Standalone applications :- Programs written in Java to carry out certain
tasks on a

standalone local computer.

 2. Web applets:- S mall Java programs developed for internet applications.

Simple Java Program

 class Sample {

public static void main(String [] args) {

System.out.println(“Hello World ”);

}

}

Output: Hello World

The first line declares a class, which is an object – oriented construct.
Everything must be placed inside a class.

public static void main(String []args):- This line defines a method named
main.

public:- This keyword is an access specifier that declares the main method
as unprotected and therefore making it accessible to all other classes.

 static:- This keyword declares this method as one that belongs to t he entire
class and not part of any object of the class. The main method must be
declared as static since the interpreter uses this method before any objects
are created.

 void:- This keyword states that the main method does not return any value.

 System.out.println(“Hello World”); :- This line prints a string on the output
screen and appends a newline character at the end of the string.

Java Program Structure

A Java program may contain one or more sections as given below:

Documentation Section

 Package Statement

Import Statements

Interface Statements

Class Definitions

Main Method Class

{

Main Method Definition

 }

Eg. : import student.test;

This statement instructs the interpreter to load the test class contained in
the package student. Using import statements, we can have access to
classes that are part of other named packages.

Documentation Section:-

 It comprises a set of comment lines giving the name of the program, the
author and other details, which the programmer would like to refer to at a
later stage. Comments must explain the details of classes and algorithms in
the file. This would help in maintaining the program.

Package Statement:- This statement declares a package name and informs
the compiler that the classes defined here belong to this package. (eg. :
package student;)

Import Statements :- This statement is similar to #include statement in C++.

Interface Statements :- An interface is like a class but includes a group of
method declarations. This section is used only when we need to implement
the multiple inheritance feature in the program.

 Class Definitions :- A Java program may contain multiple class definitions.

Main Method Class:- Since every program requires a main method as its
starting point, this class is the essential part of a Java program. A simple
Java program may contain only this part. The main method creates objects
of various classes and establishes communications between them. O n
reaching the end of main, the program terminates and the control passes
back to the operating system

CLASSES, OBJECTS AND METHODS

 Classes provide a convenient method for packing together a group of
logically related data

items and functions that work on them.

 In Java data items are called fields, and functions are called methods.

Defining a Class

The syntax to define a class is as given below:

class classname [extends superClassName]

 {

field declaration;

method declaration;

}

Field Declaration

Data is encapsulated in a class by placing data fields inside the body of the
class definition. These variables are called instance variables because they
are created whenever an object is created.

Method Declaration and Constructors Example:

class Room {

float length, breadth;

Room(float a, float b) // Defining Construtor

 {

length = a; breadth = b;

}

void displayArea() // Defining a method

 {

System.out.println(“Area = ” + (length*breadth));

}

}

class RoomArea {

public static void main(String []args)

 {

Room room1;

room1 = new Room(100, 200); // object creation and calling constructor

room1.displayArea();

}

}

Output: Area = 20000

Creating Object Also known as instantiating an object.

 Objects in Java are created using the new operator. The new operator
creates an object of the

specified class and returns a reference to that object.

Room room1;

This statement declares a variable to hold the object reference.

 room1 = new Room(100, 200);

This statement assigns the object reference to the variable. The variable
room1 is now an

object of the class Room.

Both statements can be combined into one as shown below:

Room room1 = new Room(100, 200);In the above example the class Room
has a parameterized constructor. Therefore the constructor is invoked
explicitly by passing arguments in the object creation statement.

If there was no such constructors explicitly defined inside the class, then the
object creation statement would be like:

Room room1 = new Room();

 The method Room() is the default constructor of the class.

 We can create any number of objects of Room.
•
 Any effect in the variable of one object has no effect on the variables of
another object.

Accessing Class Members

We cannot access the instance variables and the methods directly from
outside the class.

To do this, we must use the concerned object and dot operator as shown
below.

objectName.variableName =value;

objectName.methodName(parameters);

Here objectName is the name of the object, variableName is the name of the
instance variable inside the object, and methodName is the method that we
wish to call.

METHOD OVERLOADING

 It is possible to create methods that have the same name, but different 1.
parameter lists and different definitions. This is called method
overloading.

 When we call a method in an object, Java matches up the method name 2.
first and then the number and type of parameters to decide which one of
the definitions to execute. This process is known as polymorphism

 To create an overloaded method, all we have to provide several different 3.
method definitions in the class, all with the same name, but with different
parameter lists.

 The difference may either be in the number or type of arguments.
4.

Example:

 class S um

 {

int add(int a, int b)

{

return (a+b);

}

int add(int a, int b, int c)

{ return (a+b+c);

}

}

 class Addition

{

public static void main(String args[])

 {

Sum obj = new Sum(); int s1 = obj.add(1, 2, 3); // invokes the function int
add(int a, int b, int c)

int s2 = obj.add(10, 20); // invokes the function int add(int a, int b);

System.out.println(“S um = ” + s1);

System.out.println(“S um = ”+ s2);

}

}

Output: Sum = 6

 Sum = 30

