MODULE-4-Inverse kinematics EC 368-ROBOTICS

What is Forward Kinematics and Inverse Kinematics?

Problem Formulation

- Forward Kinematics
- End effector position as a function of q
- We solve for $H_{n}^{0}(q)$.
- Inverse Kinematics
- Given $H=T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=A_{1}\left(q_{1}\right) \cdots A_{n}\left(q_{n}\right)$
- Find all joint variables q_{1}, \ldots, q_{n}
- Can rewrite as 12 equations in n unknowns as $T_{i j}\left(q_{1}, \ldots, q_{n}\right)=h_{i j}$
- Why not 16 equations?
- Last row is always considered as [0001], neglect that row then only 12 simultaneous equations are needed for solution.

METHODS OF SOLUTION

- We have to find joint variables in terms of the end effector position and orientation which is more difficult.
- There are two ways:(1)Algebraic approach
(2) Geometrical approach
- In Algebraic method,end effector Position parameters(x,y and z) is obtained from Homogenous Transformation matrix.
- By applying Cosine rules
- Pythagoras theorem
- Sum of angles identities
- Use atan2 (arc tangent function)

It is used in applications involving vectors in Euclidean space ,such as finding the direction from one point to another. To convert Rotation matrix representation into Euler angle.
$\operatorname{atan} 2(y, x)=C a r t e s i a n ~ t o ~ p o l a r ~$
Gets value of y and x and assumes a complex number as $x+i y$ and returns its phase

EG:INVERSE KINEMATICS OF RR PLANAR ELBO MANIPULATOR-ALGEBRAIC APPROACH

To find Inverse Kinematics

$$
T_{2}^{0}=\left[\begin{array}{cccc}
c_{12} & -s_{12} & 0 & \begin{array}{cc}
a_{1} c_{1}+a_{2} c_{12} \\
s_{12} & c_{12}
\end{array} 0 \\
0 & 0 & 1 & a_{1} s_{1}+a_{22} s_{12} \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow y
$$

$$
c_{12}=\cos \left(\theta_{1}+\theta_{2}\right)
$$

$$
s_{12}=\sin \left(\theta_{1}+\theta_{2}\right)
$$

$$
x=a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right)
$$

$$
y=a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)
$$

Continued...
$\cos \operatorname{cosioj}=\cos a \cos \theta-\sin A \sin l{ }^{2}$
$\sin (A+B)=\sin A \cos B+\cos A \sin B$.
step 2 : squaring and adding. $\Rightarrow \quad x^{2}+y^{2}=\left\{a^{2}\left\{\begin{aligned} a_{1}^{2} \cos ^{2} \theta_{1} & +a_{2}^{2} \cos ^{2}\left(\theta_{1}+\theta_{2}\right) \\ & +2 a_{1} a_{2} \cos \theta_{1} \cdot \cos \theta_{1}\end{aligned}\right.\right.$ $+2 a_{1} Q_{2} \cos \theta_{1} \cdot \cos \left(\theta_{1}+\theta_{3}\right)$

Let $\theta_{1}=A, \theta_{1}+\theta_{2}=B$.

Continued....
Stys:- Apply shanaf angen iduwitior \&
substitute $\cos \mathrm{O}_{2} \rightarrow C_{2}$
$\sin \theta_{2} \rightarrow \Sigma_{2}$
$\left\{\begin{array}{l}x=\left(a_{1}+a_{2} c_{2}\right) \cos \theta_{1}-a_{2} s_{2} \sin \theta_{1} \\ y=\left(a_{1}+a_{2} c_{2}\right) \sin \theta_{1}+a_{2} s_{2} \cos \theta_{1}\end{array}\right.$
obtained from:

$$
x=a_{1} c_{1}+a_{2}\left(c_{1} c_{2}-s_{1} s_{2}\right)
$$

$$
\begin{aligned}
& =\left(a_{1}+a_{2} c_{2}\right) c_{1}-a_{2} s_{2} s_{1} \\
& =a_{1} s_{1}+a_{2} \quad\left(s_{1} c_{1}+c_{1} s_{1}\right)
\end{aligned}
$$

$$
=\left(a_{1}+a_{2} \dot{c}_{1}\right) s_{1}+a_{2} s_{2} c_{1}
$$

Conscder y -

$$
y=\left(a_{1}+a_{2} c_{2}\right) \sin \theta_{1}+a_{2} s_{2} \cos \theta_{1} \rightarrow(\sqrt{6}
$$

Note:

$$
\begin{aligned}
& a \cos \theta+b \sin \theta=c \\
& \theta=\tan ^{-1} \frac{c}{\sqrt{a^{2}+b^{2}-c^{2}}}-\tan ^{-1}\left(\frac{a}{b}\right)
\end{aligned}
$$

Continued....
Hom (2)

$$
\begin{aligned}
a= & a_{2} s_{2} ; b=a_{1}+a_{2} c_{2} ; c=y \\
\theta_{1}= & \tan ^{-1} \frac{y}{\sqrt{a_{2}^{2} s_{2}^{2}+a_{1}^{2}+a_{2}^{2} c_{2}^{2}+2 a_{1} a_{2} c_{2}-y^{2}}} \\
& -\tan ^{-1}\left(\frac{a_{2} s_{2}}{a_{1}+a_{2} c_{2}}\right) \\
\theta_{1}=\tan ^{-1} & \operatorname{sqr}\left(\frac{y}{a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} c_{2}-y^{2}}\right)-\tan ^{-1}\left(\frac{a_{2} s_{2}}{\left(a_{1}+a_{2} c_{2}\right.}\right.
\end{aligned}
$$

From (1) $x^{2}+y^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} c_{2}$

$$
\left.\left.\begin{array}{l}
b_{1}=\tan ^{-1}\left(\frac{y}{\operatorname{sart}} x^{2}+y^{2}-y^{2}\right.
\end{array}\right)-\tan ^{-1}\left(\frac{a_{2} s_{2}}{a_{1}+a_{2} c_{2}}\right)\right] \text { (B) }
$$

Irinf variables of $R R$ (2 lunt plaaor dbow
af and θ_{2} is thus found out manipulafor)

Redundant solution:
Redundant solutions are available while performing Inverse Kinematics

$$
\cos \theta_{2} \cdot \frac{x^{2}+y^{2}-a_{1}{ }^{2}-a_{2}{ }^{2}}{2 a_{1} a_{2}}
$$

$$
\sin \theta_{2}= \pm \sqrt{1-\cos ^{2} \theta_{2}}
$$

So θ_{2} cannot be confirmed as Cos^{-1} There comes the importance of attn 2

$$
\begin{aligned}
& \theta_{2}=\operatorname{atan} 2\left(\sin \theta_{2}, \cos \theta_{2}\right) \\
& \theta_{2}=a \tan 2\left(s_{2}, c_{2}\right)
\end{aligned}
$$

Condition for this solution to ex est

$$
\begin{aligned}
& \text { if }-1 \leqslant c_{2} \leqslant 1 \\
& -1 \leqslant \frac{x^{2}+y^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} \leqslant 1 \\
& \left(a_{1}-a_{2}\right)^{2} \leqslant x^{2}+y^{2} \leqslant\left(a_{1}+a_{2}\right)^{2}
\end{aligned}
$$

KINEMATIC DECOUPLING

- Some complicated problems like Stanford manipulator and for manipulators with 6 DOF with last 3 joint axes intersect at a point (wrist centre), general IK is difficult So Kinematic decoupling is done.
- For that Decouple into two solutions: inverse position of wrist centre
inverse orientation of wrist centre

Kinematic Decoupling

$$
\begin{gathered}
\text { link } \begin{array}{ccccc}
a_{i} & \alpha_{i} & d_{i} & \theta_{i} \\
1 & 0 & -90 & 0 & \theta_{1}^{*} \\
2 & 0 & 90 & d_{2} & \theta_{2}^{*} \\
3 & 0 & 0 & d_{3}^{*} & 0 \\
4 & 0 & -90 & 0 & \theta_{4}^{*} \\
5 & 0 & 90 & 0 & \theta_{5}^{*} \\
6 & 0 & 0 & d_{6} & \theta_{6}^{*}
\end{array} \\
A_{i}=\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

- IK problem: for given R and o solve 9 rotational and 3 positional equations:

$$
\begin{aligned}
R_{6}^{0}\left(q_{1}, q_{2}, \ldots, q_{6}\right) & =R \\
o_{6}^{0}\left(q_{1}, q_{2}, \ldots, q_{6}\right) & =o
\end{aligned}
$$

- Spherical wrist as paradigm.

- Let o_{c} be the intersection of the last 3 joint axes; as z_{3}, z_{4}, and z_{5} intersect at o_{c}, the origins o_{4} and o_{5} will always be at o_{c}; the motion of joints 4,5 and 6 will not change the position of o_{c}; only motions of joints 1,2 and 3 can influence position of o_{c}.

$$
o=\left[\begin{array}{l}
o_{x} \\
o_{y} \\
o_{z}
\end{array}\right] \quad o_{c}^{0}=\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right] \Rightarrow q_{1}, q_{2}, q_{3}
$$

$$
R=R_{3}^{0} R_{6}^{3} \Rightarrow
$$

Introduction Robotics, lecture 3 of 7

$$
o=o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
R_{6}^{3}=\left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{T} R \Rightarrow q_{4}, q_{5}, q_{6}
$$

