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Segmentation

Digital Image Processing



2 Image Segmentation

• Obtain a compact representation of the image to  

be used for further processing.

• Group together similar pixels

• Image intensity is not sufficient to perform

semantic segmentation

– Object recognition

• Decompose objects to simple tokens (line segments, spots,  

corners)

– Finding buildings in images

• Fit polygons and determine surface orientations.

– Video summarization

• Shot detection



3 Image Segmentation (cont.)

Goal: separate an image into “coherent”  

regions.

• Basic methods

– point, line, edge detection

– thresholding

– region growing

– morphological watersheds

• Advanced methods

– clustering

– model fitting.

– probabilistic methods.

– …



4 Fundamentals

• Edge information is in general not sufficient.

Constant intensity  

(edge-based  

segmentation)

Textured region  

(region-based  

segmantation)



5 Point, line and edge detection

• First order derivatives produce  

thick edges at ramps.

• Second order derivatives are non  

zero at the onset and at the end  

of a ramp or step edge (sign  

change).

• Second order derivatives respond  

stronger at isolated points and  

thin lines than first order  

derivatives.



6 Detection of isolated points

• Simple operation using the Laplacian.

if 2 f (x, y) T1
g(x, y) 

0 otherwise



7 Line detection

• The Laplacian is  

also used here.

• It has a double  

response

– Positive and  

negative values at  

the beginning and  

end of the edges.

• Lines should be thin  

with respect to the  

size of the detector
Absolute value Positive value



8 Line detection (cont.)

• The Laplacian is isotropic.

• Direction dependent filters localize 1 pixel thick  

lines at other orientations (0, 45, 90).



9 Line detection (cont.)

• The Laplacian is isotropic.

• Direction dependent filters  

localize 1 pixel thick lines at  

other orientations (0, 45, 90).



10 Edge detection

• Edge models

– Ideally, edges should be 1 pixel thin.

– In practice, they are blurred and noisy.

Step edge Ramp edge Roof edge



11 Edge detection (cont.)



12 Edge detection (cont.)

Edge point detection

• Magnitude of the first  

derivative.

• Sign change of the second  

derivative.

Observations:

• Second derivative produces  

two values for an edge  

(undesirable).

• Its zero crossings may be  

used to locate the centres of  

thick edges.



13
Fundamental steps in edge

detection

• Image smoothing for noise reduction.

– Derivatives are very sensitive to noise.

• Detection of candidate edge points.

• Edge localization.

– Selection of the points that are true members  

of the set of points comprising the edge.



14 Image gradient

• The gradient of an image:

•

The gradient points in the direction of most rapid increase

in intensity.

The gradient direction is given by

The edge strength is given by the gradient magnitude

Source: Steve Seitz



15 Gradient operators

f (x, y)
 f (x 1, y)  f (x, y)

x

f (x, y)
 f (x, y 1)  f (x, y)

y

Roberts operators



16 Gradient operators (cont.)

Integrates image  

smoothing



17 Gradient operators (cont.)

Diagonal edges



18 Gradient operators (cont.)

Image Sobel |gy|

Sobel |gx| Sobel |gx|+|gx|



19 Gradient operators (cont.)

Image smoothed  

prior to edge  

detection.

The wall bricks are

smoothed out.

Image Sobel |gy|

Sobel |gx| Sobel |gx|+|gx|



20 Gradient operators (cont.)

Diagonal Sobel filters



21 Gradient operators (cont.)

Thresholded Sobel gradient amplitydes at 33% of max value

Thresholded gradient Image smoothing prior to

gradient thresholding



22 The LoG operator

• A good place to look for edges is the maxima of the first  

derivative or the zeros of the second derivative.

• The 2D extension approximates the second derivative by  

the Laplacian operator (which is rotationally invariant):

2 f 2 f
2 f (x, y) 

x2 
y2

• Marr and Hildreth [1980] argued that a satisfactory  

operator that could be tuned in scale to detect edges is the  

Laplacian of the Gaussian (LoG).



23 The LoG operator (cont.)

2 G(x, y)* f (x, y)  2G(x, y)* f (x, y)

• The LoG operator is given by:


x2 y2

2 2 2 2

2

2 2

 2 2

 4


x2 y2

 x2  y2  2 2 

G(x, y) G(x, y)



x y

 
 

 2 2

 e
y2


  e

 x2
 



24 The LoG operator (cont.)

2 2

 4


x2 y2

2G 2G  x2  y2  2 2 
2G(x, y)    e

x2 y2
 

The zero crossings are at:

x2  y2  2 2



25 The LoG operator (cont.)

• Fundamental ideas

– The Gaussian blurs the image. Iτ reduces the

intensity of structures at scales much smaller than σ.

– The Laplacian is isotropic and no other directional  

mask is needed.

• The zero crossings of the operator indicate edge  

pixels. They may be computed by using a 3x3  

window around a pixel and detect if two of its  

opposite neighbors have different signs (and  

their difference is significant compared to a  

threshold).



26 The LoG operator (cont.)

Image LoG

Zero  

crossings

Zero crossings  

with a threshold  

of 4% of the  

image max



27 The LoG operator (cont.)

• Filter the image at various scales and keep the zero  

crossings that are common to all responses.

• Marr and Hildreth [1980] showed that LoG may be  

approximated by a difference of Gaussinas (DOG):

1 2

1 22 2

21

1 2 2 1 2 2

DoG(x, y) 
2



2




x2 y2


x2  y2

e ,  e 

• Certain channels of the human visual system are  

selective with respect to orientation and frequency  

and can be modeled by a DoG with a ratio of  

standard deviations of 1.75.



29 The LoG operator (cont.)

• LoG has fallen to some disfavour.

• It is not oriented and its response averages the  

responses across the two directions.

– Poor response at corners.

– Difficulty in recording the topology of T-junctions  

(trihedral vertices).

• Several studies showed that image components  

along an edge contribute to the response of LoG to  

noise but not to a true edge. Thus, zero crossings  

may not lie exactly on an edge.



30 The LoG operator (cont.)

Poor corner and trihedral vertices detection



31 Designing an optimal edge detector

• Criteria for an “optimal” edge detector [Canny 1986]:

– Good detection: the optimal detector must minimize the probability of

false positives (detecting spurious edges caused by noise), as well as

that of false negatives (missing real edges).

– Good localization: the edges detected must be as close as possible to  

the true edges

– Single response: the detector must return one point only for each true  

edge point; that is, minimize the number of local maxima around the true  

edge.



32 Canny edge detector

1.Convolution with derivative of Gaussian

2.Non-maximum Suppression

3.Hysteresis Thresholding



33 Canny edge detector

Step 1: Convolution with derivative of Gaussian

Smooth by Gaussian

Compute x and y derivatives

Compute gradient magnitude and orientation
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34 Canny edge detector (cont.)

We wish to mark points along the curve where the magnitude is biggest.

We can do this by looking for a maximum along a slice normal to the curve

(non-maximum suppression).  These points should form a curve.  There are

then two algorithmic issues: at which point is the maximum, and where is the

next one?

Step 2:Non-Maximum Suppression



35 Canny edge detector (cont.)

original image



36 Canny edge detector (cont.)

Gradient magnitude



37 Canny edge detector (cont.)

Non-maximum suppression and hysteresis thresholding
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ng

Non-maximum suppression (cont.)

Source: D. Forsyth

At pixel q, we have a  

maximum if the value of  

the gradient magnitude  

is larger than the values  

at both p and at r.

Interpolation provides

these values.

http://justin-liang.com/tutorials/canny/

http://justin-liang.com/tutorials/canny/
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ng

Assume the marked  

point is an edge point.  

Then we construct the  

tangent to the edge  

curve (which is normal  

to the gradient at that  

point) and use this to  

predict the next points  

(here either r or s).

Source: D. Forsyth

Predict the next edge point



Source: S. Seitz
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Reduces false edge pixels. It uses a low (TL) and a high  

threshold (TH) to create two additional images from the  

gradient magnitude image g (x,y):

Hysteresis Thresholding

g(x, y) TH

otherwise0 otherwise 0
L H

g (x, y) 
g(x, y) g(x, y) TL , g (x, y) 

g(x, y)
 
 

gL(x,y) has more non zero pixels than gH(x,y).

We eliminate from gL(x,y) all the common non zero pixels:

gL (x, y)  gL (x, y)  gH (x, y)

gL(x,y) and gH(x,y) may be viewed as weak and strong edge  

pixels.

Canny suggested a ratio of 2:1 to 3:1 between the thresholds.



41

• After the thresholdings, all strong pixels are  

assumed to be valid edge pixels. Depending  

on the value of TH, the edges in gH(x,y)  

typically have gaps.

• All pixels in gL(x,y) are considered valid edge

pixels if they are 8-connected to a valid edge

pixel in gH(x,y).

Source: S. Seitz

Hysteresis Thresholding (cont.)
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low threshold  

(weak edges)

Hysteresis thresholding (cont.)

high threshold  

(strong edges)

hysteresis threshold

Source: L. Fei-Fei



43 Canny vs LoG

Image Thresholded gradient

LoG Canny

Both edges of the  

concrete band lining the  

bricks were preserved.



44 Edge Linking

• Even after hysteresis thresholding, the detected  

pixels do not completely characterize edges  

completely due to occlusions, non-uniform  

illumination and noise. Edge linking may be:

– Local: requiring knowledge of edge points in  

a small neighborhood.

– Regional: requiring knowledge of edge  

points on the boundary of a region.

– Global: the Hough transform, involving the  

entire edge image.



45 Hough transform

• An early type of voting scheme.

• Each line is defined by two points (xi,yi) and (xj,yj).

• Each point (xi,yi) has a line parameter space (a,b)

because it belongs to an infinite number of lines yi=axi+b.

• All the points (x,y) on a line y=a’x+b’ have lines in  

parameter space that intersect at (a’x+b’).

Image space Parameter

space
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• Problems with the (a,b) parameter space:
– Unbounded parameter domain

– Vertical lines require infinite a.

• Polar (normal) representation of a line:

x cos  y sin  

Hough transform (cont.)

Accumulator  

array



47 Hough transform (cont.)

• A: intersection of curves corresponding to points 1, 3, 5.

• B: intersection of curves corresponding to points 2, 3, 4.

• Q, R and S show the reflective adjacency at the edges of  

the parameter space. They do not correspond to points.



49 Practical details

• Try to get rid of irrelevant features

– Take only edge points with significant gradient  

magnitude.

• Choose a good grid / discretization

– Too coarse: large votes obtained when too many  

different lines correspond to a single bucket.

– Too fine: miss lines because some points that are not  

exactly collinear cast votes for different buckets.

• Increment also neighboring bins (smoothing in  

accumulator array).


