
EST 102 CPC

MODULE-2

Introduction to C programming

● C is a structured, high-level, machine independent programming language.
● It allows software developers to develop programs without worrying about the

hardware platforms where they will be implemented.
● The root of all modern languages is ALGOL.
● BCPL (Basic Combined Programming Language) was developed for writing

system software.
● Using many features of BCPL, a new language was created which was named

B.
● C evolved from ALGOL, BCPL and B by Dennis Ritchie at Bell Laboratories in

1972.
● C uses many concepts from these languages and added the concept of data

types and other powerful features.

● C language became more popular with the publication of the
book ‘The C Programming Language’ by Brian Kerningham
and Dennis Ritchie.

● The book gained popularity and the language came to be
known as “K&R C”.

● To ensure that the C language standard, ANSI approved a
version of C which is called ANSI C.

● C language was again improved, enhanced and became an
ANSI/ISO approved language.

● All popular computer languages are dynamic in nature.
● They continue to improve their power and scope by new

features.
● The standardization committee of C added few features of

C++ , Java to C to enhance usefulness of the language which
is referred to as C99.

History of C Language:

Basic Structure of C programs:
● A C-program may contain one or more sections as shown below;

● The documentation section consists of a set of comment lines giving the
name of the program, the author and other details, which the programmer
would like to use later.

● The link section provides instruction to the compiler to link functions from
the system library.

● The definition section defines all symbolic constants.
● There are some variables that are used in more than one function which

are called global variables and are declared in the global declaration
section, that is outside of all the functions.

● Every C program must have one main() function section.
○ This section contains two parts;

■ Declaration part: declares all variables used in executable part.
■ Executable part: There is at least one statement in the

executable part.
○ These 2 parts appear between the opening and closing braces.
○ The program execution begins at the opening brace and ends at the

closing brace.
○ The closing brace of main() section is the logical end of the program.
○ All statements in the declaration and executable parts end with a

semicolon(;).

● The subprogram section contains all the user-defined functions
that are called in the main function.
○ These are placed immediately after the main function.
○ They can appear in any order.

● A function is a subroutine that may include one or more
statements designed to perform a specific task.

● To write a C program, we create functions and then put them
together.

Sample C-program to print a message:

#include<stdio.h> //pre-processor directive

main() //main function declaration

{

 printf(“Hello World”); //to output the string on display

}

The #include directive

● #include is a preprocessor directive.
○ C-programs are divided into modules or functions.
○ Some functions are written by users and some others stored in C library.
○ Library functions are grouped category-wise and are stored in different

files known as header files.
○ If we want to access functions stored in library, it is necessary to tell the

compiler about the files to be accessed.
○ This is achieved by using the preprocessor directive #include as follows:

 #include<filename>

○ Filename is the name of the library file that contain the required function
definition.

○ Preprocessor directives are placed at the beginning of a program.

● Following are some of the commonly used header files;
○ <stdio.h> Standard I/O library functions
○ <math.h> Mathematical functions
○ <string.h> String manipulation functions
○ <time.h> Time manipulation functions
○ <ctype.h> Character testing & conversion functions
○ <stdlib.h> Utility functions

● The pre-processor directive tells the compiler to include the mentioned
header file in the program.

● stdio.h is a header file that contains the definitions of common input output
functions such as scanf() and printf() etc. It activates keyboard and
monitor.

The main() function
● main() is a part of every C-program.
● C permits different forms of main statement.

○ main()
○ int main()
○ void main()
○ main(void)
○ void main(void)
○ int main(void)

● The empty pair of parentheses indicates that the function has no arguments.
● This may be explicitly indicated by using the keyword void inside the

parentheses.
● We may also specify the keyword int or void before the word main.
● The keyword void means that the function does not return any value to the

operating system and int means that the function returns an integer value to
the operating system.

● When int is specified , the last statement in the program must be “return 0”

Comments:
● Single line comment is represented using //
● The lines beginning with /* and ending with */ are known as

comment lines.
● Comment lines enhances the readability.
● Comment lines are not executable statements and therefore

anything between /* and */ is ignored by the compiler.
● Comments cannot be nested in C.

Predefined functions:

● Functions that has already been written, compiled and linked
together with our program at the time of linking.

● Eg: printf and scanf
● Printf-causes everything between the starting and ending quotation

marks to be printed out.
● Consider the statement below:

printf(“Hello world!!”);

It produces the following output;

Hello world!!

● The information contained between the parentheses is called the
argument of the function.

Note:

● Every statement in C should end with a semicolon (;) mark.
● A newline character (\n) instructs the computer to go to the next(new) line.
● Horizontal tab character (\t) instructs the computer to leave one tab

horizontal space.
● C language make distinction between uppercase and lowercase letters.

○ printf and PRINTF are not the same.
○ In C, everything is written in lowercase letters.
○ However uppercase letters are used for symbolic names representing

constants.
○ Upper case letters are also used in output strings.

CHARACTER SET:
● The characters that can be used to form words, numbers,

expressions depend upon the computer on which the program
is run.

● The characters in C are grouped into the following categories:
○ Letters
○ Digits
○ Special characters
○ White spaces

● The compiler ignores white spaces unless they are a part of a
string constant, but are prohibited between the characters of
keyword and identifiers.

C TOKENS:

● Tokens are basic building blocks or smallest individual units of
C language.

● They are used together to write a C program.
● C has 6 types of tokens:

○ Identifiers
○ Keywords
○ Constants
○ Strings
○ Special symbols
○ Operators

C tokens and examples:

Keywords:
● Keywords serve as basic building blocks for program statements.
● All keywords must be written in lowercase.
● Keywords will be having some specific usage associated with them.
● They have some standard, predefined meanings in C.
● These can be used only for their intended purpose.
● They can’t be used for some other purpose.

○ For eg: “default” is a keyword in C.
○ So, in a C program, we can’t use default as an identifier or a

variable.
● The standard ANSI C supports only 32 keywords.
● Depending on the compiler used, there can be additional keywords.

The 32 keywords in ANSI C:

Identifiers:

● Identifiers are the names given to various program elements like
variables, constants, functions, arrays etc.,

● These are user-defined names and consist of a sequence of letters
and digits, with a letter as a first character.

● Both uppercase and lowercase letters are permitted, although
lowercase letters are commonly used.

● The underscore character is also permitted in identifiers.
○ It is usually used as a link between two words in long

identifiers.
● Generally, it is recommended that the identifier should represent the

purpose for which it is used.

Rules for Identifiers:

1. First character must be an alphabet(or underscore).
2. Must consist of only letters, digits or underscore.
3. Cannot use a keyword as an identifier.
4. Must not contain white space.
5. Only first 31 characters are significant.(Most of the C

compilers allow a maximum of 31 characters in an identifier.)

Constants:

● Constants in C refer to fixed values that do not change during
execution of a program.

● C supports several types of constants as illustrated below;

Numeric constants:

● Integer constants and real constants(floating point constants)
are collectively called numeric constants,

Integer constants:

● Integer constant refers to a sequence of digits.
● There are 3 types of integers: decimal integers, octal integer

and hexadecimal integer.
● Decimal integers have set of digits , 0 to 9, preceded by an

optional + or - sign.
○ Valid examples of decimal integer constants are

426 +859 0 85963 +78

● Commas, embedded spaces, non-digit characters are not
permitted between digits. Eg: 15 720 20,000 $23 are
illegal numbers..

Octal Integer constants:

● Consist of any combination of digits from 0 to 7, with a
leading 0.
○ Eg: 037 0 0435 0521

Hexadecimal Integer constants:

● A sequence of digits preceded by 0x or 0X.
● They may include alphabets A through F or a through f.
● The letters A to F and a to f represents numbers 10 through

15.
● Eg: 0X2 0x9F 0x
● We rarely use octal and hexadecimal numbers in

programming.

Real constants:

● Integer numbers are inadequate to represent quantities that vary
continuously, such as distances, heights, prices, temperatures,
prices and so.

● These quantities are represented by numbers containing
fractional parts.Such numbers are called real (or floating point)
constants.

● Eg: 17.548 0.0083 435.26 -0.26 +2.3
● These numbers are shown in decimal notation, having a whole

number followed by a decimal point and the fractional part.
● It is possible to omit digits before the decimal point.

○ ie, .95 +.788 -.5 are all valid.
● A real number may also be expressed in exponential notation.

Character constants:

Single character constants:
● A single character constant contains a single character enclosed

within a pair of single quote marks.
● Example of character constants are:

 ‘5’ ‘X’ ‘;’ ‘ ‘
● The character constant ‘5’ is not the same as the number 5.
● Character constants have integer values known as ASCII values.
● For eg; printf(“%d”, ‘a’); would print the number 97, the ASCII

value of the letter a.
● The statement printf(“%c”, ‘97’); would output the letter ‘a’.
● Since each character constant represents an integer value, it is

also possible to perform arithmetic operations on character
constants.

String Constants:

● A string constant is a sequence of characters enclosed in
double quotes.

● The characters may be letters, numbers, special characters
and blank space.

● Eg: “Hello!” “1996” “5+6” “X”

VARIABLES:

● A variable is a data name that is used to store a data value.
● A variable is an identifier that is used to represent a single data item.
● A variable has to be declared properly before it is used in a statement

within a program.
● The general form of variable declaration is;

 data-type variable-list;

● It make take different values at different times during the execution of
the program.

● A variable name can be chosen by the programmer in a meaningful
way so as to reflect its function or nature in the program.

● Some examples of such names: average, height, total etc.,

● Variable names may consist of letters, digits, and the underscore(_)
character subject to the following conditions:
○ They must begin with a letter or underscore as the first

character.
○ ANSI standard recognizes a length of 31 characters. However,

length should not be normally more than 8 characters, since
only the first 8 characters are treated as significant by many
compilers.

○ Uppercase and lowercase are significant.
■ ie,Total is not same as total and TOTAL

○ It should not be a keyword.
○ Whitespace is not allowed.

DATA TYPES:

● C language is rich in its data types.
● From machine to machine, storage representations and machine

instructions do vary.
● The variety of data types available allow the programmer to select

the type appropriate to the needs of the application as well as the
machine.

● ANSI C supports 3 classes of data types:
○ Primary /Primitive/ Fundamental data types
○ Derived data types
○ User-defined data types

Primary Data types:

● All C compilers support 5 fundamental data types;
○ Integer(int)
○ Character(char)
○ Floating point(float)
○ Double-precision floating point(double)
○ void

Void types:

● The void type has no values.
● Usually used to specify the type of functions.
● If a function is specified as type void, it do not return any value to

the calling function.

Character types:

● A single character can be defined as a character(char)
type data.

● Characters are usually stored in 8 bits(1 byte) of
internal storage.

● The qualifier signed or unsigned may be explicitly
applied to char.

● Unsigned chars have values between 0 and 255.
● Signed chars have values from -128 to 127.

Integer types:

● Used to hold integer quantities that do not contain a decimal
point.

● Generally, integers occupy one word of storage.
● The word size of machines do vary. So, the size of an integer that can

be stored depends on the computer.
● C has the following classes of integer storage;

○ int
○ short int
○ long int
○ unsigned int
○ unsigned short int
○ unsigned long int

Signed

● short int represents fairly
small integer values and
requires half the amount
of storage as a regular int
number uses.

● unsigned integers are
always positive and all
their bits are used for
magnitude.

Floating point types:
● Floating point (real) numbers are stored in 32 bits, with 6 digits of

precision.
● They are defined by the keyword float.
● When the accuracy provided by a float number is not sufficient, the

type double can be used.
● The double data type uses 64 bits giving a precision of 14 digits.
● The data type double represents the same data type that float

represents, but with a greater precision.
● To extend precision further, we may use long double which uses 80

bits.

Console IO operations:
● These operations allow us to receive input from the input

devices like keyboard and provide output to the output
devices like the Visual Display Unit.

● The console comprises of the keyboard and the screen.
● IO operations can be classified into

○ Formatted IO functions
○ Unformatted IO functions

● The basic difference between them is that the formatted
functions allow the input read from the keyboard or the
output displayed on the VDU to be formatted as per our
requirements.

● Eg: If values of average marks and percentage marks are to be
displayed on the screen, then the details like where this output
would appear on the screen, how many spaces would be present
between the two values, the number of places after the decimal
points, etc. can be controlled using formatted functions.

● The functions printf(), and scanf() fall under the category of
formatted console I/O functions.

● These functions allow us to supply the input in a fixed format
and let us obtain the output in the specified form.

scanf:

● scanf() allows us to enter data from keyboard that will be
formatted in a certain way.

● The general form of scanf() statement is as follows:
○ scanf ("format string", list of addresses of variables) ;

● For example: scanf ("%d %f %c", &c, &a, &ch) ;

● Note that we are sending addresses of variables (addresses are
obtained by using ‘&’ the ‘address of’ operator) to scanf() function.

● This is necessary because the values received from keyboard must
be dropped into variables corresponding to these addresses.

● The values that are supplied through the keyboard must be
separated by either blank(s), tab(s), or newline(s).

● Do not include these escape sequences in the format string.

printf:
● The general form of printf is as follows:

printf ("format string", list of variables) ;

● The format string can contain:
○ Characters that are simply printed as they are .
○ Conversion specifications that begin with a % sign.
○ Escape sequences that begin with a \ sign

Format Specifiers:

● The format specifiers are used in C for input and output
purposes.

● Using this concept, the compiler can understand that what type
of data is in a variable during taking input using the scanf()
function and printing using printf() function.

● %d - Signed integer
● %f - Float value
● %c - Character
● %s - String

Operators & Expressions:

● C supports a rich set of built-in operators.
● An operator is a symbol that tells the computer to perform certain

mathematical and logical manipulations.
● Operators are used in programs to manipulate data and variables.
● They usually form a part of mathematical or logical expressions.
● C operators can be classified into following categories:

○ Arithmetic operators.
○ Relational operators.
○ Logical operators.
○ Assignment operators
○ Increment & Decrement operators
○ Conditional operators
○ Bitwise operators
○ Special operators

Arithmetic Operators:

● C provides all arithmetic operators.
● Integer division truncates any fractional part.
● The modulo division operation produces the remainder of an integer

division.
● The modulo division operator cannot be used on floating point data.
●

● Examples of use of arithmetic operators are:
○ a-b
○ a+b
○ a*b
○ a/b
○ a%b
○ -a%b

● Here, a and b are variables and are known as operands.
● 3 categories of arithmetic operations:

○ Integer Arithmetic.
○ Real Arithmetic
○ Mixed-mode arithmetic.

Integer Arithmetic:

● When both operands in an arithmetic expression are integers, that
expression is called integer expression and the operation is called integer
arithmetic.

● Integer arithmetic always yields an integer value.

● Eg: If a and b are integers and a=14 and b=4, then;
○ a-b=10
○ a+b=14
○ a*b=56
○ a/b=3 (decimal part truncated)
○ a%b=2 (remainder of division)

Real Arithmetic:

● An arithmetic operation involving only real operands.
● A real operand may assume values either in decimal or exponential notation.
● Since floating point values are rounded to the number of significant digits

permissible, the final value is an approximation of the correct result.
● The operator % can’t be used with real operands.

Mixed-mode arithmetic:

● When one of the operands is real and the other is integer, the
expression is called a mixed-mode arithmetic.

● If either operand is of the real type, then only the real operation is
performed and the result is always a real number.

● Thus, 15/10.0 = 1.5

whereas

 15/10 = 1

Relational Operators:
● We may come across situations where we have to compare two quantities

and depending on their relation, we may have to take a decision.
● These comparisons can be done using relational operators.
● Eg: Comparing age of two persons, compare price of two items etc.,
● Expression containing a relational operator is called a relational

expression.
● The value of relational expression is either one or zero.
● If the specified relation is true, the value is is 1.
● If the specified expression is false, the value is 0.
● Eg:

10 < 20 is true

 And

20 < 10 is false

● C supports 6 relational operators:

● A simple relational expression contains only one relational operator
and takes the following form;

ae-1 relational operator ae-2
where ae-1 and ae-2 are arithmetic expressions which may be
simple constants, variables or combinations of them.

● Examples of some relational expressions:
○ 4.5 <= 10 TRUE
○ 4.5 < -10 FALSE
○ 10 < 7+5 TRUE
○ -35 >= 0 FALSE
○ a+b = c+d TRUE only if sum of values of a and b is equal to

sum of values of c and d.
● When arithmetic expressions are used in either side of relational

operators, arithmetic expression will be evaluated first and then
results are compared.

● Arithmetic operators have precedence over relational operators.
● Among the relational operators, each one is a complement of

another operator.
○ > is complement of <=
○ < is complement of >=
○ == is complement of !=

Logical Operators:
● C has the following three logical operators;

○ && meaning logical AND
○ || meaning logical OR
○ ! meaning logical NOT

● When we want to test more than one conditions to make a decision, we
can use the logical operators && and ||.

● Eg: a>b && x==10
● Above logical expression includes a relational expression (a>b) and

another relational expression (x==10) connected through a logical
operator (&&).

● The expression above is true only if a>b is true and x==10 is true.
● An expression of this kind, which combines two or more relational

expressions is termed as logical expression or a compound relational
expression.

● A logical expression yields a value one or zero according to the
following truth table;

● Some examples for the usage of logical expressions are;
○ Eg1: if(age>30 && salary<10000)
○ Eg2: if(number<0 || number>100)

Assignment Operators:

● Used to assign the result of an expression to a variable.
● ‘=’ is the usual assignment operator used.
● In addition, C has a set of ‘shorthand’ assignment operators of the

form;

v op=exp;

where v is a variable, exp is an expression and op is a C binary arithmetic
operator.

● The operator op= is known as the shorthand arithmetic operator.
● The statement v op=exp; is equivalent to v = v op (exp); with v

evaluated only once.

● Shorthand assignment operators:

● Advantages of using shorthand assignment operators;
○ What appears on the left hand side need not be repeated and

therefore it becomes easier to write.
○ The statement is more concise and easier to read.
○ The statement is more efficient.

● Eg: Consider the statement below;

x += y+1;

● This is same as x = x+ (y+1);
● The shorthand operator += means;

○ ‘add y+1’ to ‘x’

 or

○ ‘increment x by y+1’

Bitwise Operator:

● Used for manipulation of data at bit level.
● Used for testing bits, or shifting them right or left.
● Bitwise operators may not be applied to float or double.
● Following table lists the bitwise operators and their meanings;

Conditional Operator:
● A ternary operator pair “?:” is available in C to construct conditional

expressions of the form

exp1 ? exp2 : exp3

where exp1,exp2,exp3 are expressions.

● The operator ? : works as follows:
○ exp1 is evaluated first.
○ If it is nonzero(true), then the expression exp2 is evaluated and

becomes the value of the expression.
○ If exp1 is false, exp3 is evaluated and its value becomes the

value of the expression.

● Eg: Consider the following statements;

a = 10;

b = 15;

x = (a>b) ? a : b;

● In this example, x will be assigned the value of b.
● This can be achieved by using the if-else statement as follows;

if(a>b)

x=a;

else

x=b;

Increment & Decrement Operators:
● C allows two useful operators which are rarely found in other

languages. They are;
○ Increment operator (++)
○ Decrement operator (--)

● The operator ++ adds 1 to the operand while -- subtracts 1.
● Both are unary operators and takes the following form;

○ ++m; or m++;
○ --m; or m--;

● ++m; is equivalent to m = m+1;
● --m; is equivalent to m= m-1;
● Both m++ and ++m mean the same thing. But they behave

differently when they are used in expressions on the RHS of an
assignment statement.

● Eg1: Consider m=5; and y=++m;
○ Here, the value of m and y would be 6.

● Eg2: Consider m=5; and y=m++;
○ Here, the value of y would be 5 and m would be 6.

● ie, A prefix operator first adds 1 to the operand and then the result is assigned to the
variable on left whereas a postfix operator first assigns the value to the variable on the
left and then increments the operand.

Special Operator:

● C supports some special operators such as;
○ comma operator
○ sizeof operator
○ pointer operators (* and &)
○ member selection operators (. and ->)

The comma operator:

● Used to link the related expressions together.
● A comma linked list of expressions are evaluated left to right and the value of

rightmost expression is the value of combined expression.
● Eg: Consider the expression, value = (x = 10, y = 5, x+y);
● The value 10 is assigned to x, then value 5 is assigned to y and finally assigns

15 to value.
● Parentheses is compulsory here since the comma operator has lowest

precedence.

The sizeof operator:

● When the sizeof operator is used with an operand, it returns the
number of bytes the operands occupy.

● The operand may be a variable, a constant or a data type qualifier.
● Eg:

○ m = sizeof(sum);
○ n = sizeof(longint);

● Usually sizeof operator is used to find the length of arrays and
structures when their sizes are not known to the programmer.

● It is also used to allocate memory space dynamically to variables
during program execution.

Operator precedence:

● Each operator in C has precedence associated with it.
● This precedence is used to determine how an expression involving more

than one operator is evaluated.
● There are distinct levels of precedence and an operator may be belong to

one of these levels.
● The operators at higher level of precedence are evaluated first.
● The operators at same level of precedence are evaluated from left to right

or right to left depending on the level.
● This is known as the associativity property of an operator.

CONTROL FLOW STATEMENTS:

● C program is a set of statements which are normally executed sequentially in
the order in which they appear.

● But, in practice, we may come across various situations where we may have to
change the order of execution of statements based on certain conditions, or
repeat a group of statements until certain specified conditions are met.

● This involves a kind of decision making to see whether a particular condition
has occurred or not and then direct the computer to execute certain statements
accordingly.

● Such statements are called decision making statements.
● Since these statements ‘control’ the flow of execution , they are also known

as control statements.

● C involves the following control flow statements:(or decision making statements:
○ if statement
○ switch statement
○ while statement
○ for statement
○ do-while statement
○ break statement
○ continue statement
○ goto statement

Conditional statements

Loop control statements

Jump statements

if statement:

● In a program, at many times, a set of statements has to be executed in one
situation and an entirely different set of statements to be executed in another
situation.

● In such cases, if-statement is a very powerful statement.
● It is a two-way decision statement.
● It is used in conjunction with an expression.
● It takes the following form:

 if (test expression)

● Here, the computer will evaluate the expression first and then depending on
whether the value of the expression is true or false, it transfers the control to a
particular statement.

● Eg:

if (room is dark)

 put on lights

● This point of program has two paths to follow, one for the true condition and
other for the false condition as below;

● Depending on the complexity of conditions to be tested, if statement can take any
of the following forms:
○ Simple if statement.
○ if…..else statement.
○ Nested if….else statement.
○ else if ladder

Simple if statement:

● The general form of a simple if statement is;

 if (test expression)

 {

 statement-block;

}

 statement-x;

● If the test expression is true, statement-block is
executed; otherwise statement block will be
skipped and the execution will jump to the
statement-x.

● When the condition is true, both the
statement-block and statement-x will be
executed.

● Eg: Consider the following program segment;
○ The program tests the type of category of the student.
○ If the student belongs to the SPORTS category, then additional

bonus marks are added to marks before they are printed.
○ For others bonus marks are not added.

The if….else statement:

● The general form of if….else statement is;

● If the test expression is true, then the true block statement(s) , immediately
following the if statements are executed.

● Otherwise, the false block statement(s) are executed.
● In either case, either true-block or false-block will be executed, not both.
● In both the cases, the control is transferred subsequently to the statement-x.

● Eg: Consider the following program segment;

○ Here, if the code is equal to 1, statement boy = boy + 1; is executed;
and the control is transferred to the statement xxxxxxxxx; , after
skipping the else part.

○ If the code is not equal to 1, the statement girl = girl + 1; is executed
before the control reaches the statement xxxxxxxxx;

Nested if….else statement:

● When a series of decisions are involved, we may have to use more than
if...else statement in nested form as shown below:

● If the condition-1 is false, the statement-3
will be executed; otherwise it continues to
perform the second test.

● If the condition-2 is true, the statement-1
will be executed; otherwise statement-2
will be evaluated and then the control is
transferred to statement-x.

● Figure shows the flowchart
of nested if...else statements.

● Eg: Consider the following
code segment;

Dangling Else Problem:

● One of the classic problems encountered while using nested if….else
statements.

● Occurs when a matching else is not available for an if.
● In such cases, always match an else to the most recent unmatched if in

the current block.
● ie, “else is always paired with the most recent unpaired if”.
● Eg:

● Here, there is an ambiguity as to over which if
the else belongs to.

● The else will be associated to the inner if and
there is no else option for the outer if.

● In this example, the computer will execute the
statement balance = balance + bonus; without
calculating the bonus of the male account
holders.

The else if ladder:

● When multipath decisions are involved, ifs can be put together.
● A multipath decision is a chain of ifs in which the statement associated

with each else is an if.
● The general form is as follows; ● This construct is known as

the else if ladder.
● The conditions are evaluated

from the top(of the ladder)
downwards.

● As soon as a true condition is
found, the statement
associated with it is executed
and the control is transferred
to the statement-x.

● When all the n conditions
become false, the final else
containing the default
statement will be executed.

● The figure shows the logic of
execution of else if ladder
statements.

● Eg: Consider the example of grading the students in an academic
institution.

● The grading is done as per the following rules;
●

● This can be done using else if ladder as
shown here:

The switch statement:

● When one of the many alternatives is to be selected, we can use an if
statement to control the selection.

● But, when the number of alternatives increases, the complexity of such a
program dramatically increases.

● ie, program becomes difficult to read and follow and it may even confuse the
designer of the program.

● For tackling this, C has an in-built multiway decision statement known as
switch.

● The switch statement tests the value of a given variable(or expression)
against a list of case values and when a match is found, a block of
statements associated with that case is executed.

● The general form of a switch statement is as
shown:

● The expression is an integer expression or
characters.

● Value-1, value-2,... are constants or constant
expressions (evaluable to an integral
constant) and are known as case labels.

● Each of these values should be unique within
a switch statement.

● Block-1,block-2,... are statement lists and
may contain zero or more statements.

● Case labels end with a colon(:).

● Selection process of a switch statement:

● When the switch is executed, the value of the expression is successfully
compared against the values value-1, value-2, ….

● If a case is found whose value matches with the value of the expression,then
the block of statements that follows the case are executed.

● The break statement at the end of each block signals the end of a particular
case and causes an exit from the switch statement, transferring the control to
the statement-x following the switch.

● The default is an optional case.
○ When present, it will be executed if the value of the expression does not

match with any of the case values.
○ If not present, no action takes place if all matches fail and the control goes

to the statement-x.

● Eg: Showing a simple
example of C language
switch statement.

The goto statement:

● goto statement allows to branch unconditionally from one point to another in
the program.

● The goto requires a label to identify the place where the branch is to be made.
● A label can be any valid variable name, and must be followed by a colon.
● A goto breaks the normal sequential execution of the program.
● Following are the general forms of goto and label statements:

● The label: can be anywhere in the program either before or after the goto label;
statement.

● Eg:

if (x<10)

goto error;

…………

error: printf (“Error in input”);

● Forward jump: If the label: is placed after the goto label; some statements will
be skipped and the jump is known as forward jump.

● Backward jump: If the label: is placed before the goto label; a loop will be
formed and statements will be executed repeatedly. Such a jump is known as
backward jump.

● A goto is often used at the end of a program to direct the control to go to the input
statement, to read further data.

● When the goto statement is encountered,
the control is transferred to the labelled
statement.

● error is the label here.
● Then, subsequent statements are executed.

● Another use of goto statements is to transfer the control out of a
loop when certain conditions are encountered.

● The use of goto statements may make many confusions and
complications in the program rather than making a clarity.

● So, it is highly recommended to avoid the usage of goto
statements if possible.

The break statement:

● The break statement allows to jump out of a loop.
● When a break statement is encountered inside a loop, the loop is

immediately exited and the program continues with the statement
immediately following the loop.

● When the loops are nested, the break would exit from the loop
containing it.
○ ie, break would exit only a single loop.

● Illustrating how
break statement
is used within
while, for and do
while loops.

The continue statement:

● The continue statement causes the loop to be continued and after
skipping any statements in between.

● ie, the continue statement tells the compiler;

 “SKIP THE FOLLOWING STATEMENTS AND CONTINUE WITH THE
NEXT ITERATION”

● The format of continue statement is simply

continue;

● In while and do loops, continue causes the control to go directly to the
test condition and then to continue the iteration process.

● In the for loop, the increment section of loop is executed before the test
condition is evaluated.

Looping statements in C:

● In looping, a sequence of statements are executed until some conditions
for termination of the loop are satisfied.

● A program loop thus has 2 segments;
○ Body of the loop.
○ The control statement.

● The control statement tests certain conditions and then directs the repeated
execution of the statements contained in the body of the loop.

● Control structures can be classified into two based on the position of the
control statement in the loop;
○ Entry-controlled loop OR pre-test loop.
○ Exit-controlled loop OR post-test loop.

● In the entry-controlled loop,
○ The control conditions are tested before the start of the loop execution.
○ If the conditions are not satisfied, then the body of the loop will not be

executed.
● In an exit-controlled loop,

○ The test is performed at the end of the body of the loop and therefore the
body is executed unconditionally for the first time.

● In general, a looping process includes the following 4 steps:
○ Setting and initialization of a condition variable.
○ Execution of statements in the loop.
○ Test for specified value of the condition variable for execution of the

loop.
○ Incrementing or updating the condition variable.

● The test may be either to determine whether the loop has been repeated
the specified number of times or to determine whether a particular
condition has been met.

● C language provides three constructs for performing loop operations:
○ The while statement.
○ The do statement.
○ The for statement.

The while statement:
● The simplest of all the looping structures in C.
● The basic format of the while statement is ;

 while (test condition)

{

body of the loop

}

● The while is an entry-controlled loop statement.
● The test condition is evaluated and if the condition is true, then the body of the loop is

executed.
● After execution of the body, the test-condition is once again evaluated and if it is true, the

body is executed once again.
● This process is repeated until the test condition finally becomes false and the control is

transferred out of the loop.
● On exit, the program continues with the statement immediately after the body of the loop.

● The body of the loop may have one or more statements.
● The braces are needed only if the body contains two or more statements.
● Eg: C program to print the multiples of a given number using while loop in C

The do statement:

● Certain occasion demands the execution of body of the loop before performing
the test.

○ In while loop construct, test condition is checked before the loop
execution.

● do statements are used in such scenarios.
● do….while construct provides an exit-controlled loop and therefore the body of

the loop is always executed at least once.
● Following is the general form of do statement;

do

{

body of the loop

}

while (test-condition);

● On reaching the do statement, the program proceeds to evaluate the body of
the loop first.

● At the end of the loop, the test-condition in the while statement is evaluated.
● If the condition is true, the program continues to evaluate the body of the loop

once again.
● This process continues as long as the condition is true.
● When the condition becomes false, the loop will be terminated and the control

goes to the statement that appears immediately after the while statement.

● Eg: C program to print numbers from 1 to 10 using do...while loop,

The for statement:
● It is an entry-controlled loop that provides more concise loop control structure.
● The general form of the for loop is;

for (initialization ; test-condition ; increment)

{

body of the loop

}

● The execution of the for statement is as follows;
○ Initialization of the control variables is done first, using assignment

statements such as i=1 and count=0. The variables i and count are
called loop control variables.

● The value of the control variable is tested using the test condition. The
test condition is a relational expression, such as i < 10 that determines
when the loop will exit.
○ If the condition is true, the body of the loop is executed.
○ If the condition is false, the loop is terminated and the execution

continues with the statement that immediately follows the loop.
● When the body of the loop is executed, the control is transferred back to

the for statement after evaluating the last statement in the loop.
○ Now, the control variable is incremented using an assignment

statement such as i = i +1 and the new value of the control variable is
again tested to see whether it satisfies the loop condition.

○ If the condition is satisfied, the body of the loop is again executed.
○ Till the value of the control variable fails to satisfy the test condition,

this process continues.

● Eg: C program segment to print
digits from 0 to 10 in a line.

for (i = 0 ; i <= 10 ; i = i+1)

{

printf(“%d”, i);

}

printf(“\n”);

● The for loop allows negative
increments too. The before
mentioned for loop can be
modified as follows to print the
digits 9 to 0 in a line.

for (i = 9 ; i >= 0 ; i = i-1)

{

printf(“%d”, i);

}

printf(“\n”);

Additional features of for loop:
● The for loop in C has several capabilities that are not found in other loop

constructs.
○ More than one variable can be initialized at a time in the for statement.

■ The multiple arguments in the initialization section are separated by
commas.

○ More than one variable can be incremented in the for statement.
■ The multiple arguments in the increment section are separated by

commas.
○ The test condition may have any compound relation and the testing need

not be limited only to the loop control variable.
○ If necessary, one or more sections of for loop can be omitted.

■ However semicolons separating the sections must remain.

