DATA MINING AND WAREHOUSING Graph Mining

DHANYAJA N Assistant Professor STM Kannur

STM Kannur

Contents

- Graph Mining: Introduction
- Application
- Methods for finding frequent sub graph
- Apriori based approach

Graph Mining

• Graph Mining is the set of tools and techniques used to

(a) analyze the properties of real-world graphs

(b) predict how the structure and properties of a given graph might affect some application

(c) develop models that can generate realistic graphs that match the patterns found in real-world graphs of interest.

Graph Mining

Graphs

Model sophisticated structures and their interactions

- Chemical Informatics
- Bioinformatics
- Computer Vision
- Video Indexing
- Text Retrieval
- Web Analysis
- Social Networks
- Mining frequent sub-graph patterns
 - Characterization, Discrimination, Classification and Cluster Analysis, building graph indices and similarity search

Mining Frequent subgraph

Graph g

- Vertex Set V(g)
- Edge set E(g)
- Label function maps a vertex / edge to a label
- Graph g is a sub-graph of another graph g' if there exists a graph isomorphism from g to g'
- Support(g) or frequency(g) number of graphs in D = {G₁, G₂,...G_n} where g is a sub-graph
 S-C-C=0

Methods for Mining Frequent Sub graphs

- Apriori-based Approach
- Apriori-based algorithms for frequent substructure mining include AGM, FSG, and a path-join method
- AGM shares similar characteristics with Aprioribased item-set mining.
- FSG and the path-join method explore edges and connections in an Apriori-based fashion

Algorithm: AprioriGraph. Apriori-based frequent substructure mining. Input:

- D, a graph data set;
- min_sup, the minimum support threshold.

Output:

 \equiv S_k, the frequent substructure set.

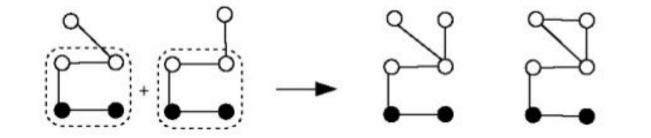
Method:

 $S_1 \leftarrow$ frequent single-elements in the data set; Call AprioriGraph(D, min_sup, S₁);

procedure AprioriGraph(D, min_sup, Sk)

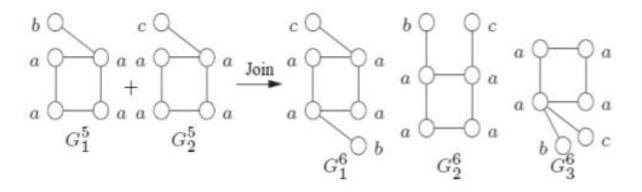
- (1) $S_{k+1} \leftarrow \emptyset;$
- (2) for each frequent $g_i \in S_k$ do
- (3) for each frequent $g_j \in S_k$ do
- (4) for each size (k+1) graph g formed by the merge of g_i and g_j do
- (5) if g is frequent in D and $g \notin S_{k+1}$ then
- (6) insert g into S_{k+1};
- (7) if $s_{k+1} \neq \emptyset$ then
- (8) AprioriGraph(D, min_sup, S_{k+1});
- (9) return;

Start with graph of small size – generate candidates with extra vertex/edge or path


AprioriGraph

- · Level wise mining method
- Size of new substructures is increased by 1
- Generated by joining two similar but slightly different frequent subgraphs
- · Frequency is then checked

Candidate generation in graphs is complex


AGM (Apriori-based Graph Mining)

- Vertex based candidate generation increases sub structure size by one vertex at each step
- Two frequent k size graphs are joined only if they have the same (k-1) subgraph (Size – number of vertices)
- New candidate has (k-1) sized component and the additional two vertices
 - Two different sub-structures can be formed

FSG (Frequent Sub-graph mining)

- Edge-based Candidate generation increases by one-edge at a time
- Two size k patterns are merged iff they share the same subgraph having k-1 edges (core)
- New candidate has core and the two additional edges

Edge disjoint path method

- Classify graphs by number of disjoint paths they have
- Two paths are edge-disjoint if they do not share any common edge
- A substructure pattern with k+1 disjoint paths is generated by joining sub-structures with k disjoint paths

Disadvantage of Apriori Approaches

- Overhead when joining two sub-structures
- Uses BFS strategy : level-wise candidate generation
 - To check whether a k+1 graph is frequent -- it must check all of its size-k sub graphs
 - May consume more memory

10

Thank You !!!

DHANYAJA N

Assistant Professor STM Kannur

11