
Module 3

Subroutines and Control Abstraction

❑Subroutines and Control Abstraction: -

❑Static and Dynamic Links,

❑Calling Sequences,

❑ Parameter Passing,

❑Generic Subroutines and Modules,

❑Exception Handling,

❑Co-routines

https://www.ktuassist.in

Abstraction Introduction

❑ Abstraction is the act of representing essential features without including the

background details or explanations.

❑ Abstraction: - abstraction as a process by which the programmer can associate a name

with a potentially complicated program fragment, which can then be thought of in

terms of its purpose or function, rather than in terms of its implementation.

❑ Two types of abstraction

✓ Control abstraction→purpose of abstraction is to perform a well-defined operation,

✓ data abstraction→ purpose of the abstraction is to represent some information

https://www.ktuassist.in

subroutines Introduction

❑Subroutines are the principal mechanism for control abstraction in

most programming languages

❑Subprograms are the fundamental building blocks of programs and are

therefore among the most important concepts in programming

language design.

❑ The reuse results in several different kinds of savings, including

memory space and coding time.

https://www.ktuassist.in

subroutines Introduction

❑ A subroutine performs its operation on behalf of a caller , who waits for the subroutine

to finish before continuing execution.

❑Most subroutines are parameterized: the caller passes arguments that influence the

subroutine’s behaviour, or provide it with data on which to operate.

❑ General Subroutines Characteristics

a. A subroutines has a single entry point.

b. The caller is suspended during execution of the called subroutines, which implies

that there is only one subroutines in execution at any given time.

c. Control always returns to the caller when the called subroutines' execution

terminates

https://www.ktuassist.in

subroutines
❑A subprogram call is an explicit request that the called subprogram be

executed.

❑ A subprogram is said to be active if, after having been called, it has begun

execution but has not yet completed that execution.

❑The two fundamental types of the subroutines are:

o Procedures-A subroutine that does not return a value

o Functions-A subroutine that returns a value

❑Most subroutines are parameterized & Arguments in the time of call are

also called actual parameters. They are mapped to the subroutine’s

formal parameters at the time a call occurs.

https://www.ktuassist.in

subroutines
❑Most languages require subroutines to be declared before they are used,

though a few (including Fortran, C, and Lisp) do not.

❑Declarations allow the compiler to verify that every call to a subroutine is

consistent with the declaration;

for example, that it passes the right number and types of arguments.

❑subroutines header is the first line of the definition, serves several

definitions:

o the following syntactic unit is a subroutines definition

o The header provides a name for the subroutines.

o May optionally specify a list of parameters

https://www.ktuassist.in

Subroutine header examples

❑ Fortran

Subroutine Adder(parameters)

❑ Ada

procedure Adder(parameters)

❑ C

void Adder(parameters)

• Function declarations are common in C and C++ programs, where they are called

prototypes.

• Java and C# do not need declarations of their methods, because there is no

requirement that methods be defined before they are called in those languages.

https://www.ktuassist.in

1. Stack layout for storage

❑The storage consumed by parameters and local variables can in most

languages be allocated on a stack

❑The allocation of space on a subroutine call - stack

❑Each routine, as it is called, is given a new stack frame,or activation

record, at the top of the stack.

❑This frame may contain arguments and/or return values, bookkeeping

information (including the return address and saved registers), local

variables, and/or temporaries.

❑ When a subroutine returns, its frame is popped from the stack.

https://www.ktuassist.in

Stack layout for storage

https://www.ktuassist.in

Stack layout for storage

❑Stack recap: Each routine, as called, gets a new frame put on the top of the

stack

• Contains arguments, return values, book-keeping info, local variables, and

temporaries

❑With stack allocation, the subroutine frame for the current frame is on top

of the stack

❑ sp: top of the stack

❑ fp: an address within the top frame

❑ To access non-local variables, static link (for static scoping) or dynamic link

(dynamic scoping) are maintained in the frame

https://www.ktuassist.in

Stack layout for storage

❑Static and dynamic links maintained on stack:

❑Dynamic links allow one to walk back the frame pointer linearly

down the call stack.

❑Static links allow one to walk back the frame pointer from a

lexical viewpoint.

https://www.ktuassist.in

Static & Dynamic Links

❑Each stack frame contains a reference to the frame of the

lexically surrounding subroutine. This reference is called the

static link.

❑By analogy, the saved value of the frame pointer, which will be

restored on subroutine return, is called the dynamic link.

❑The static and dynamic links may or may not be the same,

depending on whether the current routine was called by its

lexically surrounding routine, or by some other routine nested

in that surrounding routine.

https://www.ktuassist.in

Static & Dynamic Links

https://www.ktuassist.in

Static & Dynamic Links

❑If subroutine D is called directly from B, then clearly B’s frame

will already be on the stack .

❑It is not visible in A or E, because it is nested inside of B.

❑A moment’s thought makes clear that it is only when control

enters B (placing B’s frame on the stack) that D comes into view.

❑It can therefore be called by C, or by any other routine (not

shown) that is nested inside C or D, but only because these are

also within B.

https://www.ktuassist.in

Subroutine frame (Activation record)
• Activation record (subroutine frame) is used to store

all related information for the execution of a

subroutine

• Before a subroutine is executed, the frame must be

set up and some fields in the frame must be initialized

• Formal arguments must be replaced with actual

arguments

• This is done in the calling sequence, a sequence of

instructions before and after a subroutine, to set-up

the frame.

Temporary storage

(e.g. for expression

evaluation)

Local variables

Bookkeeping

(e.g. saved CPU

registers)

Return address

Subroutine

arguments and

returns

https://www.ktuassist.in

2.Calling Sequence

❑Calling Sequence is maintaining the subroutine call stack

❑Calling sequences in general have three components

• The code executed by the caller immediately before and after a

subroutine call.

• Prologue: code executed at the beginning of the subroutine

• Epilogue: code executed at the end of the subroutine

https://www.ktuassist.in

Example:

https://www.ktuassist.in

2.Calling Sequence

❑The term “calling sequence” is used to refer to the combined

operations of the caller, the prologue , and the epilogue.

❑Maintenance of the subroutine call stack is the

responsibility of the calling sequence

❑calling sequence refers to the code executed by the caller

immediately before and after a subroutine call —and of the

prologue (code executed at the beginning) and epilogue(code

executed at the end) of the subroutine itself.

https://www.ktuassist.in

Calling Sequence contd..
❑The calling sequence is the code a caller executes to set up a new

subroutine

❑Responsibilities:

❑On the way in: Pass parameters, save return address, change program

counter, change stack pointer, save registers that might be overwritten,

changing frame pointer to new frame, and initializing code for new

objects in the new frame

❑On the way out: passing return parameters/values, executing finalization

code for local objects, deallocating the stack frame, restoring registers,

and restoring the PC

https://www.ktuassist.in

Calling Sequence contd..

❑Some of these tasks (e.g., passing parameters) must be performed by

the caller, because they differ from call to call.

❑Most of the tasks, can be performed either by the caller or the callee.

❑space is saved if work is mostly done by callee:

❑Anything done in callee appears only once in the target program

❑Anything done by caller has to appear before and after every call in

the final compiled code

https://www.ktuassist.in

A Typical Calling Sequence

❑The stack pointer (sp) points to the first unused location on the

stack (or the last used location, depending on the compiler and

machine).

❑The frame pointer (fp) points to a location near the bottom of

the frame.

❑ Space for all arguments is reserved in the stack, even if the

compiler passes some of them in registers (the callee will need a

place to save them if it calls a nested routine).

https://www.ktuassist.in

Typical Calling Sequence

https://www.ktuassist.in

What needs to be done in the calling sequence?

❑Before the subroutine code can be executed

(caller code before the routing + prologue)

❑ set up the subroutine frame

❑Compute the parameters and pass the parameters

❑Saving the return address

❑Save registers

❑Changing sp, fp (to add a frame for the subroutine)

❑Changing pc (start running the subroutine code)

❑Execute initialization code when needed

https://www.ktuassist.in

What needs to be done in the calling sequence?

❑After the subroutine code is executed (caller code after the routine +

epilogue) – remove the subroutine frame

❑Passing return result or function value

❑Finalization code for local objects

❑Deallocating the stack frame (restoring fp and sp to their previous value)

❑Restoring saved registers and PC

❑Some of the operations must be performed by the caller, others can either

be done by the caller or callee.

https://www.ktuassist.in

To maintain this stack layout, the calling sequence might operate as

follows.

❑The caller

1. saves any caller-saves registers whose values will be needed after the call

2. computes the values of arguments and moves them into the stack or

registers

3. computes the static link, and passes it as an extra, hidden argument

4. uses a special subroutine call instruction to jump to the subroutine,

simultaneously passing the return address on the stack or in a register

https://www.ktuassist.in

To maintain this stack layout, the calling sequence

might operate as follows.

❑In its prologue, the callee

1. allocates a frame by subtracting an appropriate constant from the sp

2. saves the old frame pointer into the stack, and assigns it an

appropriate new value

3. saves any callee-saves registers that may be overwritten by the

current routine

https://www.ktuassist.in

To maintain this stack layout, the calling sequence

might operate as follows.

❑After the subroutine has completed, the epilogue

1. moves the return value (if any) into a register or a reserved location

in the stack

2. restores callee-saves registers if needed

3. restores the fp and the sp

4. jumps back to the return address

https://www.ktuassist.in

To maintain this stack layout, the calling sequence

might operate as follows.

❑Finally, the caller

1. moves the return value to wherever it is needed

2. restores caller-saves registers if needed

❑ Many parts of the calling sequence, prologue, and epilogue can be

omitted in common cases.

https://www.ktuassist.in

Inline expansion

• In some languages, programmers can actually flag routines that should be expanded

inline –stack overhead is avoided.

• Example (in C++ or C99):

inline int max(int a,int b)

{ return a > b ? a : b}

• Ada does something similar, but keyword is:

pragma inline(max);

https://www.ktuassist.in

PARAMETER PASSING

https://www.ktuassist.in

Parameter Passing

❑ Most subroutines are parameterized:

❑ Parameter names that appear in the declaration of a subroutine are known as

formal parameters.

❑ Variables and expressions that are passed to a subroutine in a particular call

are known as actual parameters.

❑ actual parameters are also known as arguments.

❑ Parameter passing mechanisms have three basic implementations

–value
–reference (aliasing)
–closure/name

https://www.ktuassist.in

Parameter Passing Modes

❑ Some languages—including C, Fortran, ML, and Lisp—define a single

set of rules that apply to all parameters.

❑ Other languages, including Pascal , Modula, and Ada, provide two or

more sets of rules, corresponding to different parameter-passing modes.

❑ The two most common parameter-passing modes

✓ Call-by-value &

✓ Call by-reference,

https://www.ktuassist.in

Parameter Passing Modes

❑ Suppose x is a global variable in a language, and we wish to pass x as a

parameter to subroutine p: p(x);

❑ we may provide p with a copy of x’s value, or we may provide it with x’s

address.

❑ With value parameters, each actual parameter is assigned into the

corresponding formal parameter when a subroutine is called; from then on,

the two are independent.

❑ With reference parameters ,If the actual parameter is visible within the

subroutine under its original name, then the two names are aliases for the

same object, and changes made through one will be visible through the other

https://www.ktuassist.in

Techniques used for argument passing modes:

❑ call by value: copy going into the procedure

❑ call by result: copy going out of the procedure

❑ call by value result: copy going in, and again going out

❑ call by reference: pass a pointer to the actual parameter

❑ call by name: works like call by reference for simple values.

for expression it will re-evaluate the actual parameter on every use.

https://www.ktuassist.in

Parameter Passing Modes

❑ If y is passed to foo by value, then the

assignment inside foo has no visible effect—

y is private to the subroutine—and the

program prints 2 twice.

❑ If y is passed to foo by reference, then the

assignment inside foo changes x—y is just a

local name for x—and the program prints

3 twice.

❑ Call by value/result copy Call-by-

value/result x into y at the beginning of foo,

and y into x at the end of foo. so the

program would print 2 and then 3.

https://www.ktuassist.in

Ex1: illustrates call by value, value-result, reference

https://www.ktuassist.in

Call-by-Name

❑ By textual substitution

❑ Call by name work as call by reference when actual parameter is scalar, but be

different when actual parameter is expression or array then actual parameter

is re-evaluated on each access

❑ Call by name parameter passing reevaluates actual parameter

expression each time the formal parameter is read

❑ Resulting semantics:

- If actual is a scalar variable , it is pass-by-reference

- If actual is a expression or array, then actual parameter is re-

evaluated on each access

https://www.ktuassist.in

Example 2 : Call by value and call by name

https://www.ktuassist.in

Parameter Passing Modes-Call-by-value/result

❑ Like call-by-value, call-by-value/result copies the actual parameter

into the formal parameter at the beginning of subroutine execution.

❑ Unlike call-by-value, it also copies the formal parameter back into the

actual parameter when the subroutine returns.

❑ value/result would copy Call-by-value/result x into y at the beginning of

foo, and y into x at the end of foo.

❑ assignment of 3 into y would not affect x until after the inner print

statement, so the program would print 2 and then 3.

https://www.ktuassist.in

Parameter Passing Modes-Call-by-value/

❑ In Pascal, parameters are passed by value by default;

❑ They are passed by reference if preceded by the keyword var in

their subroutine header’s formal parameter list.

❑ Parameters in C are always passed by value, though the effect for

arrays is unusual : because of the interoperability of arrays and

pointers in C

❑ To allow a called routine to modify a variable other than an array in

the caller’s scope, the C programmer must pass the address of the

variable explicitly:

void swap(int *a, int *b) { int t = *a; *a = *b; *b = t; }

swap(&v1, &v2);

https://www.ktuassist.in

Parameter Passing Modes. Call-by-reference

❑ Fortran passes all parameters by reference

❑ If a built-up expression appears in an argument list, the compiler creates a

temporary variable to hold the value, and passes this variable by reference.

❑ A Fortran subroutine that needs to modify the values of its formal

parameters without modifying its actual parameters must copy the values

into local variables, and modify those instead.

https://www.ktuassist.in

Parameter Passing Modes-Call-by-Sharing

❑ Java uses call-by-value for variables of built-in type (all of which are

values), and call-by-sharing for variables of user-defined class types (all of

which are references)

❑ A Java subroutine cannot change the value of an actual parameter of built-

in type.

❑ When desired, parameters in C# can be passed by reference instead, by

labelling both a formal parameter and each corresponding argument with

the ref or out keyword.

❑ In contrast to Java, therefore, a C# subroutine can change the value of an

actual parameter of built-in type, if the parameter is passed ref or out.

https://www.ktuassist.in

Parameter Passing Modes-Call-by-Sharing

❑ Language like Clu uses the mode call-by-sharing.The actual and formal

parameters refer to the same object.

❑ It is different from call-by-value because, although we do copy the actual

parameter into the formal parameter, both of them are references;

❑ if we modify the object to which the formal parameter refers, the

program will be able to see those changes through the actual parameter

after the subroutine returns.

❑ Call-by-sharing is also different from call-by-reference, because although

the called routine can change the value of the object to which the actual

parameter refers, it cannot change the identity of that object.

https://www.ktuassist.in

Purpose of Call-by-Reference

❑ In a language that provides both value and reference parameters (e.g.,

Pascal or Modula), there are two principal reasons why the programmer

might choose Call-by-Reference.

✓ First, if the called routine is supposed to change the value of an actual

parameter (argument), then the programmer must pass the parameter by

reference. Conversely, to ensure that the called routine cannot modify the

argument, the programmer can pass the parameter by value.

✓ Second, the implementation of value parameters requires copying actuals

to formals, a potentially time-consuming operation when arguments are

large. Reference parameters can be implemented simply by passing an

address..

https://www.ktuassist.in

Read-Only Parameters

❑ To combine the efficiency of reference parameters and the safety of value

parameters,Modula-3 provides a READONLY parameter mode.

❑ Any formal parameter whose declaration is preceded by READONLY

cannot be changed by the called routine: the compiler prevents the

programmer from using that formal parameter on the left-hand side of any

assignment statement, reading it from a file, or passing it by reference to any

other subroutine.

❑ Small READONLY parameters are generally implemented by passing a

value;

❑ larger READONLY parameters are implemented by passing an address

https://www.ktuassist.in

Read-Only Parameters
❑ The equivalent of READONLY parameters is also available in C, which

allows any variable or parameter declaration to be preceded by the keyword

const. Const variables are “elaboration-time constants,”

❑ Const parameters in C parameters are particularly useful when passing

addresses:

void append_to_log(const huge_record* r) { ...

...

append_to_log(&my_record);

❑ Here the keyword const applies to the record to which r points; the callee

will be unable to change the record’s contents.

https://www.ktuassist.in

Parameter Modes in Ada

❑ Ada provides three parameter-passing modes, called in, out, and in out.

❑ In parameters pass information from the caller to the callee; they can be

read by the callee but not written.

❑ Out parameters pass information from the callee to the caller. In Ada 83

they can be written by the callee but not read; in Ada 95 they can be both

read and written, but they begin their life uninitialized.

❑ In out parameters pass information in both directions; they can be both read

and written.

❑ Changes to out or in out parameters always change the actual parameter

https://www.ktuassist.in

Closures as Parameters

❑ A closure needs to include both a code address and a referencing

environment because, in a language with nested subroutines,

❑ Ada 83 did not permit subroutines to be passed as parameters

❑ Fortran has always allowed subroutines to be passed as parameters, but only

allowed them to nest beginning in Fortran 90

❑ Subroutines are routinely passed as parameters (and returned as results) in

functional languages

❑ C and C++have no need of subroutine closures , because their subroutines

do not nest

https://www.ktuassist.in

Techniques used for argument passing:

❑ Fortran uses call by reference ,early FORTRANs.passing a constant

❑ Algol 60 has call by name, call by value. call-by-value/result

❑ Ada uses different designations: IN, OUT, IN OUT:

✓ For scalar data types (such as integers), IN is the same as call by

value, OUT is the same as call by result, and IN OUT is the same as

call by value result

✓ For compound data types (such as arrays), these can be implemented

as above, or using call by reference.

❑ Lisp and Smalltalk use call-by-value with pointer semantics.

❑ Java uses call-by-value -- with just copying for primitive types, and

pointer semantics for objects.

https://www.ktuassist.in

Parameter Modes in Ada

https://www.ktuassist.in

Generic Subroutines and Modules

https://www.ktuassist.in

Generic Subroutines and Modules

• Structured programming is a way to split your code in blocks.

• Subroutines is a sequence of program instructions that performs a

specific task,packaged as a unit.

• Modules help the programmers to split their codes into small

modules

• It is used to group the routines and data structures.

• With large programs containing many methods - subroutines will be

needed to perform similar operations on many different types.

https://www.ktuassist.in

Subroutines-Add example
String add (String a, String b)

return a + b;

--

int add (int a, int b)

return a + b;

double add (double a, double b)

return a + b;

https://www.ktuassist.in

Subroutines and Modules

• Subroutine should be written once and be capable of accepting any

arguments . This idea is known as generic programming.

• A generic or polymorphic subroutine is one that takes parameters of

different types on different activations

• In Java version 5, generic programming has been added.

• In C++, generics are known as templates.

• Other languages that feature generics are Ada, Clu, Eiffel,Modula-3 & C#.

https://www.ktuassist.in

Subroutines and Modules

❑ Generic modules/classes: useful for creating “containers”

❑ Examples of containers include stack , queue, heap, set, dictionary ,lists ,

arrays, trees, or hash tables.

❑ A generic or polymorphic subroutine is one that takes parameters of

different types on different activations

❑ Generic subroutines are needed in generic classes.

❑ They allow a method to be parameterised by a single type.

https://www.ktuassist.in

Subroutines and Modules

■ Hence our earlier example becomes vastly simplified:

public T <T> add (T a, T b)

return a + b;

■ we now have a generic type T passed as a parameter to the add method.

■ Hence we can now call the code:

int c = add(5 , 7);

double d = add (4.5, 6.9);

String concat = add(“gen” , “erics”);

https://www.ktuassist.in

Implementing Generics

• In C++, they are a static mechanism.

• All of the work required to use multiple instances of the generic code is

handled by the compiler.

• The compiler creates a separate copy of the code for every instance.

• In Java, all instances of the generic code will share that same code at run-time.

• If we call some generic parameter, T in Java, this behaves identically to

java.lang.Object except that we do not have to use casts.

https://www.ktuassist.in

Generics in C++
• A generic add method in C++:

template<typename T> T add (T a, T b)

{

return a+b;

}

• To call the method

add(5,6);

add(5.6 , 7.8);

https://www.ktuassist.in

Java Generics
• Recall the C++ example:

template<typename T> T add (T a, T b)

{ return a+b;

}

• This allows any number (int, float, short, double etc) to be added

together.

• How can we achieve this is Java?

public <T> T add (T a, T b)

{ return a+b;

}

https://www.ktuassist.in

Java Generics
• Lets perform the type erasure:

public Object add (Object a, Object b)

{

return a+b;

}

• Does this compile?

• No!, because the + operator is not applicable to Object.

• We must modify the code to make it typesafe so it can compile:

https://www.ktuassist.in

Java Generics
public <T extends Number> T add (T a, T b)

{

return a+b;

}

• We have to impose a higher bound on the type passed to the generic method.

• In this case we are saying that the type passed in will be a subclass of

java.lang.Number

• Will the code compile now?

https://www.ktuassist.in

Java Generics
public <T extends Number> T add (T a, T b)

{ if (T instanceof Integer)

return a.intValue() + b.intValue();

if (T instanceof Double)

return a.doubleValue() + b.doubleValue();

return null;

}

public static void main(String args [])

{int a = add (5 , 6);

double b = add (7.9, 11.3);

https://www.ktuassist.in

Generics in C++, Java, and C#

❑ C++(templates)is the most ambitious of the three.

❑ Java 5 and C# 2.0 provide generics purely for the sake of

polymorphism.

❑ Java’s design was heavily influenced by the desire for backward

compatibility,.

❑ The C# designers , though building on an existing language, did not feel

as constrained.

❑ They had been planning for generics from the outset, and were able to

engineer substantial new support into the .NET virtual machine.

https://www.ktuassist.in

Exception Handling

https://www.ktuassist.in

Exception Handling
• An exception is a special unexpected error condition at run time

• Built-in exceptions may be detected automatically by the

language implementation

• Exceptions can be explicitly raised

• Exceptions are handled by exception handlers to recover from

error conditions.

• Exception handlers are user-defined program fragments that are

executed when an exception is raised

https://www.ktuassist.in

Exception Handling

❑ What is an exception?

A hardware-detected run-time error or unusual condition detected by software

❑ Examples

✓ arithmetic overflow

✓ end-of-file on input

✓ wrong type for input data

✓ user-defined conditions, not necessarily errors

https://www.ktuassist.in

Exception Handling

❑ An exception can be defined as an unexpected—or at least unusual—

condition that arises during program execution, and that cannot easily

be handled in the local context.

❑ It may be detected automatically by the language implementation, or

the program may raise it explicitly

❑ Exception-handling mechanisms address these issues by moving error-

checking code “out of line,” allowing the normal case to be specified

simply, and arranging for control to branch to a handler when

appropriate.

https://www.ktuassist.in

Exception Handling
❑ What is an exception handler?

code executed when exception occurs may need a different handler for

each type of exception

❑ Purpose of an exception handler:

1.Recover from an exception to safely continue execution

2.If full recovery is not possible, print error message(s)

3.If the exception cannot be handled locally, clean up local resources and re-

raise the exception to propagate it to another handler

exception handlers can be attached to a collection of program statements

https://www.ktuassist.in

Exception Handling

❑ Exception handling in PL/I, which includes an

executable state-ON conditions

❑ The nested statement (often a GOTO or a BEGIN...END block) is a

handler.

❑ It is not executed when the ON statement is encountered, but is

“remembered” for future reference. It will be executed later if exception

condition (e.g., OVERFLOW) arises.

❑ Because the ON statement is executable, the binding of handlers to

exceptions depends on the flow of control at run time

https://www.ktuassist.in

Exception Handling

❑ languages like Clu, Ada, Modula-3, Python, PHP , Ruby, C++, Java, C#,

and ML, all provide exception-handling facilities in which handlers are

lexically bound to blocks of code,

❑ In C++ or Lisp, all are programmer defined

❑ In PHP, set_error_handler can be used to turn semantic errors into

ordinary exceptions

❑ In Ada, exception is a built-in type, and so you can easily make your own:

declare empty_queue : exception;

❑ Most languages allow a throw or raise in an if to raise an exception

https://www.ktuassist.in

Exception Handling in C++

❑ If something_unexpected occurs, this

code will throw an exception, and the catch

block will execute in place of the remainder

of the try block

❑ if an exception is not handled within the

current subroutine,then the subroutine returns abruptly and the exception is

raised at the point of call:

❑ If the exception is not handled in the calling routine, it continues to

propagate back up the dynamic chain.

❑ If it is not handled in the program’s main routine, then a predefined

outermost handler is invoked, and usually terminates the program.

https://www.ktuassist.in

Exception Handling in C++

try {

...foo();

...

cout << "everything’s ok\n";

...

} catch (my_exception) {

cout << "oops\n";

}

void foo() {

...

if (something_unexpected)

throw my_exception();

...}

https://www.ktuassist.in

Exception Handling -Exception Propagation

❑ In most languages, a block of code can have a list of exception

handlers

❑ When an exception arises, the handlers are examined in order;

❑ control is transferred to the first one that matches the exception.

❑ In C++, a handler matches if it names a class from which the

exception is derived, or if it is a catch-all (...).

https://www.ktuassist.in

Exception Handling -Exception Propagation

https://www.ktuassist.in

Exception Handling -Exception Propagation

❑ In the example here, let us assume that end_of_file is a subclass of

io_error.

❑ Then an end_of_file exception, if it arises, will be handled by the first of

the three catch clauses. All other I/O errors will be caught by the second;

all non-I/O errors will be caught by the third.

❑ If the last clause were missing, non-I/O errors would continue to

propagate up the dynamic chain.

https://www.ktuassist.in

Exception Handling -Cleanup Operations

❑ In C++, an exception that leaves a scope, to call destructor functions

for any object s declared within that scope.

❑ Destructors are often used to deallocate heap space and other

resources (e.g., open files).

❑ in Common Lisp by an unwind-protect expression, and

❑ in Modula-3, Python, Java, and C# by means of try. . . finally

❑ Code in Modula-3 might look like this:

https://www.ktuassist.in

Exception Handling -Implementation of Exceptions

❑ If a protected block of code has handlers for several different

exceptions, they are implemented as a single handler containing a

multi arm if statement:

if exception matches end of file

. . .

elsif exception matches io error

. . .

else

. . . – – “catch-all” handler

https://www.ktuassist.in

Exception Handling without Exceptions

❑ exceptions can sometimes be simulated in a language that does not

provide them as a built-in.

❑ most versions of C provide a pair of library routines entitled setjmp

and longjmp.

❑ Setjmp takes as argument a buffer into which to capture a

representation of the program’s current state.

❑ This buffer can later be passed to longjmp to restore the captured

state.

❑ Setjmp has an integer return type: zero indicates “normal” return;

nonzero indicates “return” from a longjmp

https://www.ktuassist.in

setjmp and longjmp.

• setjmp(jmp_buf buf) : uses buf to remember current position and

returns 0.

• longjmp(jmp_buf buf, i) : Go back to place buf is pointing to and

return i

• setjmp can be used like try (in languages like C++ and Java).

• The call to longjmp can be used like throw (Note that longjmp()

transfers control to the point set by setjmp()).

https://www.ktuassist.in

Exception Handling without Exceptions

❑ When initially called, setjmp returns

a 0, and control enters the protected

code.

❑ If longjmp(buffer, v) is called anywhere within the protected code, or in

subroutines called by that code, then setjmp will appear to return again,

this time with a return value of v, causing control to enter the handler.

❑ Setjmp and longjmp are usually implemented by saving the current machine registers in

the setjmp buffer, and by restoring them in longjmp

https://www.ktuassist.in

84

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

Exceptions
Exception describes errors

caused by your program

and external circumstances.

These errors can be caught

and handled by your

program.

https://www.ktuassist.in

COROUTINES

https://www.ktuassist.in

COROUTINES

https://www.ktuassist.in

Normal ROUTINES

https://www.ktuassist.in

COROUTINES

https://www.ktuassist.in

https://www.ktuassist.in

Coroutines

❑ A coroutines is a subprogram that has multiple entries and

controls them itself. Also called symmetric control

❑ A coroutine call is named a resume

❑ coroutines repeatedly resume each other, possibly forever

❑ Coroutines provide concurrent execution of program units

(the coroutines)

❑ Their execution is interleaved, but not overlapped

https://www.ktuassist.in

Coroutines

❑ The first resume of a coroutine is to its beginning , but

subsequent calls enter at the point just after the last executed

statement in the coroutine

❑ A coroutine changes the continuation every time it runs.

❑When we transfer from one coroutine to another, our old

program counter is saved:the coroutine we are leaving is

updated to reflect it.

❑ if we perform a transfer into the same coroutine multiple times,

each jump will take up where the previous one left off.

https://www.ktuassist.in

Coroutines

❑ Coroutines are execution contexts that exist concurrently, but

that execute one at a time, and that transfer control to each

other explicitly, by name

❑ Coroutines can be used to implement

✓ iterators

✓ threads

❑ Because they are concurrent (i.e., simultaneously started but not

completed), coroutines cannot share a single stack

https://www.ktuassist.in

Coroutines-Stack Allocation

❑ Because they are concurrent (i.e., simultaneously started but not

completed),coroutines cannot share a single stack: their

subroutine calls and returns, taken as a whole, do not occur in

last-in-first-out order.

❑ The simplest solution is to give each coroutine a fixed amount

of statically allocated stack space.

❑ This approach is adopted in Modula-2, which requires the

programmer to specify the size and location of the stack when

initializing a coroutine.

https://www.ktuassist.in

Coroutines-cactus Stack

❑ If coroutines can be created at arbitrary levels , then two or

more coroutines may be declared in the same nonglobal scope,

and must thus share access to objects in that scope.

❑ To implement this sharing, the run-time system must employ a

so-called cactus stack.

❑ Each branch off the stack contains the frames of a separate

coroutine.

https://www.ktuassist.in

Coroutines-cactus Stack

Figure A cactus stack. Each branch to the side represents the creation of a coroutine (A, B, C, and D). The
static nesting of blocks is shown at right. Static links are shown with arrows. Dynamic links are indicated simply by
vertical arrangement: each routine has called the one above it. (Coroutine B, for example, was created by the
main program, M. B in turn called subroutine S and created coroutine D.)

https://www.ktuassist.in

Coroutines-cactus Stack

❑ The dynamic chain of a given coroutine ends in the block in which

the coroutine began execution.

❑ The static chain of the coroutine, extends down into the

remainder of the cactus, through any of surrounding blocks

❑ Returning from the main block of a coroutine will generally

terminate the program as a whole.

❑When a given coroutine is no longer needed, the Modula-2

programmer can simply reuse its stack space.

❑ In Simula, the space will be reclaimed via garbage collection

https://www.ktuassist.in

Coroutines-Transfer

❑ To transfer from one coroutine to another, the run-time system

must change the program counter (PC), the stack, and the

contents of the processor’s registers.

❑ These changes are encapsulated in the transfer operation: one

coroutine calls transfer; a different one returns.

❑ Because the change happens inside transfer , changing the PC

from one coroutine to another simply amounts to remembering

the right return address:

https://www.ktuassist.in

Switching coroutines

❑ to change the stack ,change the stack pointer register,and to avoid

using the frame pointer inside of transfer itself.

❑ At the beginning of transfer we push the return address and all

of the other callee saves registers onto the current stack.

❑We then change the sp, pop the (new) return address (ra) and other

registers off the new stack, and return:

https://www.ktuassist.in

