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1. Concurrency 

 a program is said to be concurrent if it may have more than one active 

execution context—more than one ―thread of control.‖ Concurrency has at 

least three important motivations: 

 

1. To capture the logical structure of a problem. Many programs, 

particularly servers and graphical applications, must keep track of more than 

one largely independent ―task‖ at the same time. Often the simplest and most 

logical way to structure such a program is to represent each task with a 

separate thread of control. 

 

2. To exploit extra processors, for speed. Long a staple of high-end servers 

and super computers, multiple processors have recently become ubiquitous 

in desktop and laptop machines. To use them effectively, programs must 

generally be written (or rewritten) with concurrency in mind. 

 

3. To cope with separate physical devices. Applications that run across the 

Internet or a more local group of machines are inherently concurrent. 



Likewise, many embedded applications-the control systems of a modern 

automobile, for example-often have separate processors for each of several 

devices. 

 

 In general, we use the word concurrent to characterize any system in which 

two or more tasks may be underway (at an unpredictable point in their 

execution) at the same time.  

 Under this definition, coroutines are not concurrent, because at any given 

time, all but one of them is stopped at a well-known place.  

 A concurrent system is parallel if more than one task can be physically 

active at once; this requires more than one processor.  

 

1.1 Concurrent Programming Fundamentals 
 

 Within a concurrent program, we will use the term thread to refer to the 

active entity that the programmer thinks of as running concurrently with 

other threads. 

 In most systems, the threads of a given program are implemented on top of 

one or more processes provided by the operating system. OS designers often 

distinguish between a heavyweight process, which has its own address space, 

and a collection of lightweight processes, which may share an address space. 

Lightweight processes were added to most variants of Unix in the late 1980s 

and early 1990s, to accommodate the proliferation of shared-memory 

multiprocessors.  

 We will sometimes use the word task to refer to a well-defined unit of work 

that must be performed by some thread.  

 In one common programming idiom, a collection of threads shares a 

common ―bag of tasks‖—a list of work to be done. 

 Each thread repeatedly removes a task from the bag, performs it, and goes 

back for another.  

 Sometimes the work of a task entails adding new tasks to the bag. 

 Unfortunately, terminology is inconsistent across systems and authors. 

 Several languages call their threads processes. Ada calls them tasks. Several 

operating systems call lightweight processes threads. The Mach OS, from 

which OSF Unix and Mac OS X are derived, calls the address space shared 

by lightweight processes a task. 

 A few systems try to avoid ambiguity by coining new words, such 

as―actors‖or ―filaments.‖ 

 



1.1.1 Communication and Synchronization 

 

 In any concurrent programming model, two of the most crucial issues to be 

addressed are communication and synchronization.  

 

Communication 

 

 Communication refers to any mechanism that allows one thread to obtain 

information produced by another. 

 Communication mechanisms for imperative programs are generally based on             

o shared memory or 

o  message passing.  

 In a shared-memory programming model, some or all of a program’s 

variables are accessible to multiple threads. For a pair of threads to 

communicate, one of them writes a value to a variable and the other simply 

reads it.  

 In a message-passing programming model, threads have no common state. 

For a pair of threads to communicate, one of them must perform an explicit 

send operation to transmit data to another. 

 

Synchronization 

 

 Synchronization refers to any mechanism that allows the programmer to 

control the relative order in which operations occur in different threads. 

 Synchronization is generally implicit in message-passing models: a message 

must be sent before it can be received.  

o If a thread attempts to receive a message that has not yet been sent, it 

will wait for the sender to catch up.  

 Synchronization is generally not implicit in shared-memory models: unless 

we do something special, a ―receiving‖ thread could read the ―old‖ value of 

a variable, before it has been written by the ―sender.‖ 

 In both shared-memory and message-based programs, synchronization can 

be implemented either by spinning (also called busy-waiting) or by blocking. 

 In busy-wait synchronization, a thread runs a loop in which it keeps 

reevaluating some condition until that condition becomes true (e.g., until a 

message queue becomes nonempty or a shared variable attains a particular 

value)-presumably as a result of action in some other thread, running on 

some other processor.  



 Note that busy-waiting makes no sense on a uniprocessor: we cannot expect 

a condition to become true while we are monopolizing a resource (the 

processor) required to make it true. (A thread on a uniprocessor may 

sometimes busy-wait for the completion of I/O, but that’s a different 

situation: the I/O device runs in parallel with the processor.) 

 In blocking synchronization (also called scheduler-based synchronization), 

the waiting thread voluntarily relinquishes its processor to some other 

thread.  

 Before doing so, it leaves a note in some data structure associated with the 

synchronization condition.  

 A thread that makes the condition true at some point in the future will find 

the note and take action to make the blocked thread run again. 

 

2. Thread Creation Syntax 

 

 Almost every concurrent system allows threads to be created (and destroyed) 

dynamically.  

 Syntactic and semantic details vary considerably from one language or 

library to another, but most conform to one of six principal options: co-

begin, parallel loops, launch-at-elaboration, fork (with optional join), 

implicit receipt, and early reply.  

 The first two options delimit threads with special control-flow constructs. 

 The others use syntax resembling (or identical to) subroutines. 

 At least one language (SR) provides all six options. Most others pick and 

choose. 

 Most libraries use fork/join, as do Java and C#. Ada uses both launch-at-

elaboration and fork. 

 OpenMP uses co-begin and parallel loops. RPC systems are typically based 

on implicit receipt. 

 

 Co-begin 

 

 The usual semantics of a compound statement (sometimes delimited with  

begin. . . end) call for sequential execution of the constituent statements.  

 A co-begin construct calls instead for concurrent execution: 

co-begin – – all n statements run concurrently 

stmt 1 

stmt 2 

. . . 



stmt n 

end 

 Each statement can itself be a sequential or parallel compound, or 

(commonly) a subroutine call.  

 Co-begin was the principal means of creating threads in Algol-68. It appears 

in  a variety of other systems as well, including OpenMP: 

#pragma omp sections 

{ 

# pragma omp section 

{ printf("thread 1 here\n"); } 

# pragma omp section 

{ printf("thread 2 here\n"); } 

} 

 In C, OpenMP directives all begin with #pragma omp.  
 

Parallel Loops 

 

 Many concurrent systems, including OpenMP, several dialects of Fortran, 

and the recently announced Parallel FX Library for .NET, provide a loop 

whose iterations are to be executed concurrently.  

 In OpenMP for C, we might say 

 

#pragma omp parallel for 

for (int i = 0; i < 3; i++) { 

printf("thread %d here\n", i); 

} 

 In C# with Parallel FX, the equivalent code looks like this: 

Parallel.For(0, 3, i => { 

Console.WriteLine("Thread " + i + " here"); 

}); 

 The third argument to Parallel. For is a delegate, in this case a lambda 

expression.  

 In many systems it is the programmer’s responsibility to make sure that 

concurrent execution of the loop iterations is safe, in the sense that 

correctness will never depend on the outcome of race conditions.  

 Access to global variables, for example, must generally be synchronized, to 

make sure that iterations do not conflict with one another. 

 The compiler checks to make sure that a variable written by one thread is 

neither read nor written by any concurrently active thread. 
 



Launch-at-Elaboration 

 

 In several languages, Ada among them, the code for a thread may be 

declared with syntax resembling that of a subroutine with no parameters. 

 When the declaration is elaborated, a thread is created to execute the code. 

 In Ada (which calls its threads tasks) we may write 

procedure P is 

task T is 

... 

end T; 

begin -- P 

... 

end P; 

 Task T has its own begin. . . end block, which it begins to execute as soon as 

control enters procedure P.  

 If P is recursive, there may be many instances of T at the same time, all of 

which execute concurrently with each other and with whatever task is 

executing (the current instance of) P.  

 The main program behaves like an initial default task.  

 When control reaches the end of procedure P, it will wait for the appropriate 

instance of T (the one that was created at the beginning of this instance of P) 

to complete before returning.  

 This rule ensures that the local variables of P are never deallocated before T 

is done with them. 

 

Fork/Join 

 

 Co-begin, parallel loops, and launch-at-elaboration all lead to a concurrent 

control-flow pattern in which thread executions are properly nested.  

 The fork operation is more general: it makes the creation of threads an 

explicit, executable operation.  

 The companion join operation, when provided, allows a thread to wait for 

the completion of a previously forked thread. 

 Because fork and join are not tied to nested constructs, they can lead to 

arbitrary patterns of concurrent control flow  

 In addition to providing launch-at-elaboration tasks, Ada allows the 

programmer to define task types: 

 

task type T is 



... 

begin 

... 

end T; 

 The programmer may then declare variables of type access T (pointer to T), 

and may create new tasks via dynamic allocation: 

 

pt : access T := new T; 

 The new operation is a fork; it creates a new thread and starts it executing.  

 There is no explicit join operation in Ada, though parent and child tasks can 

always synchronize with one another explicitly if desired (e.g., immediately 

before the child completes its execution).  

 As with launch-at-elaboration, control will wait automatically at the end of 

any scope in which task types are declared for all threads using the scope to 

terminate. 

 Any information an Ada task needs in order to do its job must be 

communicated through shared variables or through explicit messages sent 

after the task has started execution.  

 In Java one obtains a thread by constructing an object of some class derived 

from a predefined class called Thread: 

 

class Image extends Thread { 

... 

Image( args ) { 

// constructor 

} 

public void run() { 

// code to be run by the thread 

} 

} 

... 

Image ob = new Image( constructor args ); 

 In Java, however, the new thread does not begin execution when first 

created.  

 To start it, the parent (or some other thread) must call the method named 

start, which is defined in Thread: 

 

ob.start( ); 



 Start makes the thread runnable, arranges for it to execute its run method, 

and returns to the caller.  

 The programmer must define an appropriate run method in every class 

derived from Thread. The run method is meant to be called only by start. 

 There is also a join method: 

 

ob.join( ); // wait for completion 

 

 A particularly elegant realization of fork and join appears in the Cilk 

programming language, developed by researchers at MIT 

 To fork a logically concurrent task in Cilk, one simply prepends the keyword 

spawn to an ordinary function call: 

 

spawn foo( args ); 

 

Implicit Receipt 

 

 We have assumed in all our examples so far that newly created threads will 

run in the address space of the creator.  

 In RPC systems it is often desirable to create a new thread automatically in 

response to an incoming request from some other address space.  

 Rather than have an existing thread execute a receive operation, a server can 

bind a communication channel to a local thread body or subroutine. 

 When a request comes in, a new thread springs into existence to handle it. 

 In effect, the bind operation grants remote clients the ability to perform a 

fork within the server’s address space, though the process is often less than 

fully automatic. 

 

Early Reply 

 

 We normally think of sequential subroutines in terms of a single thread, 

which saves its current context, executes the subroutine, and returns to what 

it was doing before.  

 The effect is the same, however, if we have two threads—one that executes 

the caller and another that executes the callee.  

 In this case, the call is essentially a fork/join pair. The caller waits for the 

callee to terminate before continuing execution.  

 In several languages, including SR and Hermes, the callee can execute a 

reply operation that returns results to the caller without terminating.  



 After an early reply, the two threads continue concurrently. 

 Semantically, the portion of the callee prior to the reply plays much the same 

role as the constructor of a Java or C# thread; the portion after the reply 

plays the role of the run method.  

 

2.1 Implementation of Threads 

 
 The threads of a concurrent program are usually implemented on top of one 

or more processes provided by the operating system. 

 At one extreme, we could use a separate OS process for every thread; at the 

other extreme we could multiplex all of a program’s threads on top of a 

single process.  

 The problem with putting every thread on a separate process is that 

processes (even ―lightweight‖ ones) are simply too expensive in many 

operating systems. 

o Because they are implemented in the kernel, performing any operation 

on them requires a system call.  

o Because they are general purpose, they provide features that most 

languages do not need, but have to pay for anyway.   

 At the other extreme, there are two problems with putting all threads on top 

of a single process:  

o first, it precludes parallel execution on a multi core or multiprocessor 

machine  

o second, if the currently running thread makes a system call that 

blocks, then none of the program’s other threads can run, because the 

single process is suspended by the OS. 

 In the common two-level organization of concurrency (user-level threads on 

top of kernel-level processes), similar code appears at both levels of the 

system:  

o the language run-time system implements threads on top of one or 

more processes in much the same way that the operating system 

implements processes on top of one or more physical processors. 

 To turn coroutines into threads, we proceed in a series of three steps.  

o First, we hide the argument to transfer by implementing a scheduler 

that chooses which thread to run next when the current thread yields 

the processor.  

o Second, we implement a preemption mechanism that suspends the 

current thread automatically on a regular basis, giving other threads a 

chance to run.  



o Third, we allow the data structures that describe our collection of 

threads to be shared by more than one OS process, possibly on 

separate processors, so that threads can run on any of the processes. 

 

     

 
Figure: Two-level implementation of threads 

 

3. Implementing Synchronization 

 

 Synchronization is the principal semantic challenge for shared-memory 

concurrent programs.  

 Typically, synchronization serves either to make some operation atomic or 

to delay that operation until some necessary precondition holds.  

 Atomicity is most commonly achieved with mutual exclusion locks. Mutual 

exclusion ensures that only one thread is executing some critical section of 

code at a given point in time.  



 Critical sections typically transform a shared data structure from one 

consistent state to another. 

 Condition synchronization allows a thread to wait for a precondition, often 

expressed as a predicate on the value(s) in one or more shared variables.  

 In general, our goal is to provide only as much synchronization as is 

necessary to eliminate bad races—those that might otherwise cause the 

program to produce incorrect results. 

 

3.1 Busy-Wait Synchronization 

 

 Busy-wait condition synchronization is easy if we can cast a condition in the 

form of ―location X contains value Y ‖: a thread that needs to wait for the 

condition can simply read X in a loop, waiting for Y to appear.  

 To wait for a condition involving more than one location, one needs 

atomicity to read the locations together, but given that, the implementation is 

again a simple loop. 

 

Spin Locks 

 

 spin locks, which provide mutual exclusion, and barriers, which ensure that 

no thread continues past a given point in a program until all threads have 

reached that point. 

 

type lock = Boolean := false; 

procedure acquire lock(ref L : lock) 

while not test and set(L) 

while L 

– – nothing – – spin 

procedure release lock(ref L : lock) 

L := false 

 

Example: A simple test-and-test_and_set lock. 

 

 a practical spin lock needs to run in constant time and space, and for this one 

needs an atomic instruction that does more than load or store.  

 The simplest such instruction is known as test_and_set. It sets a Boolean 

variable to true and returns an indication of whether the variable was 

previously false.  

 Given test_and_set, acquiring a spin lock is almost trivial:  



while not test and set(L) 

– – nothing – – spin _ 

 

 Many processors provide atomic instructions more powerful than test_and_ 

           set.  

 Several can swap the contents of a register and a memory location 

atomically. A few can add a constant to a memory location atomically, 

returning the previous value.  

 Several processors, including the x86, the IA-64, and the SPARC, provide a 

particularly useful instruction called compare_and_swap (CAS).  

 This instruction takes three arguments: a location, an expected value, and a 

new value. It checks to see whether the expected value appears in the 

specified location, and if so replaces it with the new value, atomically.  

 

Barriers 

 

 Data-parallel algorithms are often structured as a series of high-level steps, 

or phases, typically expressed as iterations of some outermost loop. 

 Correctness often depends on making sure that every thread completes the 

previous step before any moves on to the next.  

 A barrier serves to provide this synchronization. 

 The simplest way to implement a busy-wait barrier is to use a globally 

shared counter, modified by an atomic fetch_and_decrement instruction.  

 The counter begins at n, the number of threads in the program. As each 

thread reaches the barrier it decrements the counter.  

 If it is not the last to arrive, the thread then spins on a Boolean flag.  

 The final thread (the one that changes the counter from 1 to 0) flips the 

Boolean flag, allowing the other threads to proceed.  

 To make it easy to reuse the barrier data structures in successive iterations 

(known as barrier episodes), threads wait for alternating values of the flag 

each time through.  

 

3.2 Nonblocking Algorithms 

 

 A thread is said to be ―blocked‖ if it cannot make forward progress without 

action by other threads.  

 Conversely, an operation is said to be nonblocking if in every reachable state 

of the system, any thread executing that operation is guaranteed to complete 



in a finite number of steps if it gets to run by itself (without further 

interference by other threads). 

 In this theoretical sense of the word, locks are inherently blocking, 

regardless of implementation: if one thread holds a lock, no other thread that 

needs that lock can proceed.  

 We can generalize to design special-purpose concurrent data structures that 

operate without locks. 

 Modifications to these structures generally follow the pattern 

repeat 

prepare 

CAS    

until success 

clean up 

 If it reads more than one location, the ―prepare‖ part of the algorithm may 

need to double-check to make sure that none of the values has changed 

before moving on to the CAS.  

 A read-only operation may simply return once this double-checking is 

successful. 

 Nonblocking algorithms have several advantages over blocking algorithms. 

o They are inherently tolerant of page faults and preemption:  

o They can also safely be used in signal (event) and interrupt handlers, 

 They can also be faster than locks.  

 

3.3 Scheduler Implementation 

 

 To implement user-level threads, OS-level processes must synchronize 

access to the ready list and condition queues, generally by means of 

spinning.  

 In a simple reentrant thread scheduler code, we disable timer signals before 

entering scheduler code, to protect the ready list and condition queues from 

concurrent access by a process and its own signal handler.  

 Our code assumes a single ―low-level‖ lock (scheduler lock) that protects the 

entire scheduler.  

 Before saving its context block on a queue (e.g., in yield or sleep on), a 

thread must acquire the scheduler lock.  

 It must then release the lock after returning from reschedule.  

 Of course, because reschedule calls transfer, the lock will usually be 

acquired by one thread (the same one that disables timer signals) and 

released by another  



 The code for yield can implement synchronization itself, because its work is 

self-contained.  

 

3.4 Semaphores 

 

 Semaphores are the oldest of the scheduler-based synchronization 

mechanisms. 

 They are still heavily used today, particularly in library-based 

implementations of concurrency. 

 A semaphore is basically a counter with two associated operations, P and V. 

 A thread that calls P atomically decrements the counter and then waits until 

it is non-negative.  

 A thread that calls V atomically increments the counter and wakes up a 

waiting thread, if any.  

 It is generally assumed that semaphores are fair, in the sense that threads 

complete P operations in the same order they start them.  

 A semaphore whose counter is initialized to 1 and for which P and V 

operations always occur in matched pairs is known as a binary semaphore.  

 It serves as a scheduler-based mutual exclusion lock: the P operation 

acquires the lock; V releases it.  

 More generally, a semaphore whose counter is initialized to k can be used to 

arbitrate access to k copies of some resource.  

 The value of the counter at any particular time is always k more than the 

difference between the number of P operations (#P) and the number of V 

operations (#V) that have occurred.  

 A P operation blocks the caller until #P ≤ #V + k.  

 

 

 

 

 

 

 

 

 

 

 



 



 



 

 



 

 



 



 



4. Inspection/Introspection 

 

 Symbol table metadata makes it easy for utility programs-to inspect a 

program and reason about its structure and types.  

 Lisp has long allowed a program to reason about its own internal structure 

and types (this sort of reasoning is sometimes called introspection). 

 Java and C# provide similar functionality through a reflection API that 

allows a program to peruse its own metadata.  

 Reflection appears in several other languages as well, including Prolog and 

all the major scripting languages. 

 In a dynamically typed language such as Lisp, reflection is essential: it 

allows a library or application function to type check its own arguments.  

 In a statically typed language, reflection supports a variety of programming 

idioms that were not traditionally feasible. 

 

4.1 Reflection 

 

 Reflection can be useful when printing diagnostics.  

 More significantly, reflection is useful in programs that manipulate other 

programs. 

 In a language with reflection, there is no need to examine source code: 

 if they load the already-compiled program into their own address space, they 

can use the reflection API to query the symbol table information created by 

the compiler.  

 Interpreters, debuggers, and profilers can work in a similar fashion.  

 In a distributed system, a program can use reflection to create a general-

purpose serialization mechanism, capable of transforming an almost 

arbitrary structure into a linear stream of bytes that can be sent over a 

network and reassembled at the other end.  

 There are dangers, associated with the undisciplined use of reflection. 

o Because it allows an application to peek inside the implementation of 

a class, reflection violates the normal rules of abstraction and 

information hiding.  

o It may be disabled by some security policies.  

o By limiting the extent to which target code can differ from the source, 

it may preclude certain forms of code improvement. 

 Perhaps the most common pitfall of reflection, at least for object-oriented 

languages, is the temptation to write case (switch) statements driven by type 

information. 



Java 5 Reflection 

 

 Java’s root class, Object, supports a getClass method that returns an instance 

of java.lang.Class.  

 Objects of this class in turn support a large number of reflection operations, 

among them the getName method used. 

 A call to getName returns the fully qualified name of the class, as it is 

embedded in the package hierarchy.  

 For array types, naming conventions are taken from the JVM: 

 

int[] A = new int[10]; 

System.out.println(A.getClass().getName()); // prints "[I" 

String[] C = new String[10]; 

System.out.println(C.getClass().getName()); // "[Ljava.lang.String;" 

Foo[][] D = new Foo[10][10]; 

System.out.println(D.getClass().getName()); // "[[LFoo;" 

 Here Foo is assumed to be a user-defined class in the default (outermost) 

package. 

 A left square bracket indicates an array type; it is followed by the array’s 

element type.  

 One can even use reflection to call a method of an object whose class is not 

known at compile time. Suppose that someone has created a stack containing 

a single integer: 

Stack s = new Stack(); 

s.push(new Integer(3)); 

 Now suppose we are passed this stack as a parameter u of Object type.  

 We can use reflection to explore the concrete type of u. In the process we 

will discover that its second method, named pop, takes no arguments and 

returns an Object result. 

 We can call this method using Method.invoke: 

 

Other Languages 

 C#’s reflection API is similar to that of Java:  

o System.Type is analogous to java.lang.Class;  

o System.Reflection is analogous to java.lang.reflect. 

o Pseudofunction typeof plays the role of Java’s pseudofield .class. 

 More substantive differences stem from the fact that PE assemblies contain a 

bit more information than is found in Java class files. 

 



4.2 Symbolic Debugging 

 

 Symbolic debuggers are built into most programming language interpreters, 

virtual machines, and integrated program development environments.  

 They are also available as stand-alone tools, of which the best known is 

GNU’s gdb.  

 symbolic refers to a debugger’s understanding of high-level language 

syntax-the symbols in the original program. 

 In a typical debugging session, the user starts a program under the control of 

the debugger, or attaches the debugger to an already running program. The 

debugger then allows the user to perform two main kinds of operations.  

o One kind inspects or modifies program data;  

o The other controls execution: starting, stopping, stepping, establishing 

breakpoints and watchpoints.  

 A breakpoint specifies that execution should stop if it reaches a particular 

location in the source code.  

 A watchpoint specifies that execution should stop if a particular variable is 

read or written.  

 Both breakpoints and watchpoints can typically be made conditional, so that 

execution stops only if a particular Boolean predicate evaluates to true. 

 Both data and control operations depend critically on symbolic information. 

 A symbolic debugger needs to be able both to parse source language 

expressions and to relate them to symbols in the original program.  

 Both data and control operations also depend on the ability to manipulate a 

program from outside: to stop and start it, and to read and write its data. 

 This control can be implemented in at least three ways.  

o The easiest occurs in interpreters. Since an interpreter has direct 

access to the program’s symbol table and is ―in the loop‖ for the 

execution of every statement. 

o The technology of dynamic binary rewriting can also be used to 

implement debugger control.  

o The third implementation of debugger control is depends on support 

from the operating system.  

 Perhaps the most mysterious parts of debugging from the user’s perspective 

are the mechanisms used to implement breakpoints, watchpoints, and single 

stepping. 

 Some processors provide hardware support to make breakpoints a bit faster. 

 The x86, for example, has four debugging registers that can be set (in kernel 

mode) to contain an instruction address.  



 Watchpoints implementation depends on hardware support.  

 

4.3 Performance Analysis 

 

 Before placing a debugged program into production use, one often wants to 

understand and if possible improve its performance.  

 Perhaps the simplest way to measure, at least approximately, the amount of 

time spent in each part of the code is to sample the program counter (PC) 

periodically. 

 This approach was exemplified by the classic prof tool in Unix.  

 By linking with a special prof library, a program could arrange to receive a 

periodic timer signal-once a millisecond, say-in response to which it would 

increment a counter associated with the current PC. 

 While simple, prof had some serious limitations. Its results were only 

approximate, and could not capture fine-grain costs. It also failed to 

distinguish among calls to a given routine from multiple locations.  

 We can use the more recent gprof tool, which relies on compiler support to 

instrument procedure prologues.  

 If our program is underperforming for algorithmic reasons, it may be enough 

to know where it is spending the bulk of its time.  

 We can focus our attention on improving the source code in the places it will 

matter most.  

 As an example of instrumentation, consider the task of identifying basic 

blocks that execute an unusually small number of instructions per cycle.  

 To find such blocks we can combine  

o (1) the aggregate time spent in each block   

o (2) a count of the number of times each block executes  and  

o (3) static knowledge of the number of instructions in each block.  

 Most modern processors provide a set of performance counters that can be 

used to good effect by performance analysis tools. The Intel Pentium M 

processor, for example, has two performance counters that can be configured 

by the kernel to count any of 47 different kinds of events, including branch 

mispredictions; TLB (address translation) misses; and various kinds of cache 

misses, interrupts, executed instructions, and pipeline stalls. 

 Unfortunately, performance counters are generally a scarce resource: their 

number, type, and mode of operation varies greatly from processor to 

processor 

 

 


