Course	Course name	L-T-P-	Year Of
			Introduction
AE482	INDUSTRIAL INSTRUMENTATION	3-0-0-3	2016
Course O	Prerequisite: Nil		
	oguin the students with the basis knowledge of processory to	na na tana	flow lovel
• 10 day	equip the students with the basic knowledge of pressure, te	inperature	, now, level,
	understand the construction and working of measuring inst	rumonta	
	understand the construction and working of measuring inst	uments	
Temperati	ire measurement. Pressure measurement. Measureme	nt of vis	cosity- Flow
measurem	ent- Anemometers- Target flow meters- Level measuremen	t or vic	
Expected	outcome		
• Th	e student will be able to understand the various instruments	used for i	ndustrial
me	esurement.	ubeu 101 1	liduștilui
Text Book	(S		
1. Do	bebelin E.O, "Measurement Systems: Application and Desig	<i>n</i> ", 4th Ed	ition,
Mo	cGraw Hill, New York, 2003.	,	,
2. Pa	tranabis D, "Principles of Industrial Instrumentation", 2nd	dition, Ta	ta McGraw
Hi	ll, New Delhi, 1997.		
3. Sp	itzer D. W., Flow measurement, ISA press, New York, 199	8	
Reference	Books		
1. An	drew W.G, "Applied Instrumentation in Process Industries	– A surve	y", Vol I &
Vo	II, Gulf Publishing Company, Houston, 2001.		
2. Do	buglas M. Considine, "Process / Industrial Instruments & C	ontrols Ha	ndbook", 5th
Ed	ition, McGraw Hill, Singapore, 1999.	C1.11	D 1
3. Lij	tak B.G. "Process Measurement and Analysis", 4th Edition	i, Chilton	BOOK
	mpany, Radnor, Pennsylvania, 2003.	Duttomy	aut h
4. NO 4. NO	inemann 1995	i, Duilei wo	orun
	Course Plan		
Module	Contents	Hours	End Sem
mouule	Contents	Hours	Exam
			Marks
	Temperature measurement: Resistance temperature detect	or	
	(RTD), principle and types, construction requirements f	or	
	industry, measuring circuits. Thermistors, principle and	nd	
	sensor types, manufacturing techniques, measuring circui	ts,	
т	linearization methods and applications. Pneumatic and	nd 7	150/
1	suction pyrometers, integrated circuit sensors, diode ty	pe '	13%
	sensors, ultrasonic thermometers, Johnson noi	se	
	thermometer, fluidic sensors, spectroscopic temperatu	re	
	measurements, thermograph, temperature switches as	nd	
	thermostats.		
	Pressure measurement basics, mechanical type instrumen	ts,	
	electromechanical type, low pressure measurement, relat	bd	
II	accessories, pressure measuring standards, selection as	ia 7	15%
	application. Transmuter definition, classification, pneumat		
	and four wire transmitters I/D and D/L converters	ie	
	and four whe transmitters, i/r and r/1 conventers.		

	FIRST INTERNAL EXAMINATION		
III	Measurement of viscosity: definitions, units, Newtonian and Newtonian behaviour, measurement of viscosity using laboratory viscometers, industrial viscometers. Viscometer selection and application. Measurement of density, definitions, units, liquid density measurement, gas densitometers, its application and selection.	7	15%
IV	Flow measurement: Introduction, definitions and units, classification of flow meters, pitot tubes, positive displacement liquid meters and provers, positive displacement gas flow meters, variable area flow meters.	6	15%
	SECOND INTERNAL EXAMINATION		
V	Anemometers: Hot wire/hot film anemometer, laser Doppler anemometer (LDA), electromagnetic flow meter, turbine and other rotary element flow meters, ultrasonic flow meters, doppler flow meters, cross correlation flow meters, vortex flow meters. Measurement of mass flow rate: radiation, angular momentum, impeller, turbine, constant torque hysteresis clutch, twin turbine Coriolis, gyroscopic and heat transfer type mass flow meters. Target flow meters: V-cone flow meters purge flow regulators, flow switches, flow meter calibration concepts, flow meter selection and application.	8	20%
VI	Level measurement: introduction, float level devices, displacer level devices, rotating paddle switches, diaphragm and deferential pressure detectors, resistance, capacitance and RF probes, radiation, conductivity, field effect, thermal, ultrasonic, microwave level switches, radar and vibrating type level sensors. Level sensor selection and application.	7	20%
	END SEMESTER EXAMINATION		

2014

Maximum Marks: 100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions from Module 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions. (15 x 2 = 30 marks)Part B

Answer any two out of three questions from Module 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions. (15 x 2 = 30 marks)Part C

Answer any two out of three questions from Module 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions. (20 x 2 = 40 marks)

Course	Course name	L-T-	·P-	Year of
code		Cred	lits 1	Introduction
AE484	INSTRUMENTATION SYSTEM DESIGN	3-0-(0-3	2016
	Prerequisite : NIL			
Course O	bjective			
• To	equip the students with the basic Concept of Instrumentat	ion s	ystem c	lesign
• To	understand the construction and working of different instr	umen	tation s	system
Syllabus				
Temperati	are measurement- Pressure measurement- Measurement of	visco	osity- Fl	low
measurem	ent- Anemometers- Target flow meters- Level measureme	nt		
Expected	outcome			
The stude	nts will be able to understand the concepts benind instrum	entati	on syst	em design
Torr Deck				
1 Iext 5001	(S E.O. Dobalin, Magguramant Systems Application and Davi	ion N	10Crow	Hill Now
I. Ve	2003	gn, w	nonaw	min, new
2	Harry N Norton Hand Book of transducers PHI 1989			
2.	fiaity is itered and book of transducers, i iii, 1969			
Reference	Books			
1.	Gregory K McMillan, Douglas M Conside, Process and In-	dustri	al Instr	umentation
Co	ontrol, McGraw Hill, 5ed, 1999			
2.	John P Bentley, Principles of Measurement Systems, Pears	on E	ducatio	n, 2004
	Course Plan			
Module	Contents		Hours	End Sem.
				Exam
				Marks
	Introduction: Concept of generalized measurement sys	tem,		
T	functional elements, generalized input-output configura	tion,	7	15%
-	static sensitivity, drifts, linearity, hysteresis, thresh	nold,		1070
	resolution, static stiffness and input-output impedance			
	Transducers: Operating principle, construction and desig	n of		
II	variable resistive transducers, variable inductive transdu	cers,	7	15%
	variable capacitive transducers, piezoelectric transdu	cers,		
	Hall effect eddy current ionization ontical transdu	cers		
	digital transducers single shaft encoders photo voltaic	cell		
III	photo conductive, photo emissive, fiber optic sensors, cor	icent	7	15%
	of smart and intelligent sensor, bio-sensors	leept		
	Construction and performance of industrially impo	rtant		
TT 7	transducer for measuring displacement, speed, vibrat	ions,	6	1.50/
IV	temperature, electrical power, strain, torque	·	6	15%
	Force, Design of intelligent instrumentation system.			
	SECOND INTERNAL EXAMINATION			ц
	Signal Conditioning & Recording (Part1): Quarter, half	and	0	
V	full bridge circuit, active filters, differential instrumenta	ation	ð	20%
	amplifiers, carrier amplifiers			
	Signal Conditioning & Recording (Part2): design of dis	play		
VI	elements, LED, bar graph displays, LCDs , nixie tube	and	7	20%
	their interfacing			

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions from Module 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions. $(15 \times 2 = 30 \text{ marks})$

Part B

Answer any two out of three questions from Module 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions. (15 x 2 = 30 marks) **Part C**

Answer any two out of three questions from Module 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions. (20 x 2 = 40 marks)

Course	e Course Name	L-T-P -	- Year of	
	ELICHT ACAINST CDAVITY	Credits		uction
AU404	FLIGHT AGAINST GRAVITY	3-0-0-3	20	10
Commo				
Course	Objectives To introduce the basic concepts of aerospace engineering and the curren	t develor	ments in t	he field
Svllabu	s:	it develop		ne neiu.
History	of aeronautics – helicopters – aircraft propulsion – aircraft config	urations	– Atmos	phere
and atm	ospheric flight – space flight – aircraft structures and materials –	rockets.		
Text Bo	ook: Anderson I.D. "Introduction to Elight" McGraw-Hill 1995	1		
Refere	nicerson, J.D., introduction to ringht, McGraw-IIII, 1995.			
110101	Kermode, A.C., "Flight without Formulae", McGraw-Hill, 1997.			
	Syllabus &Course Plan			
	-			End
Module	Contents		Hours	Sem.
				Marks
	Historical Developments in Aeronautical Activities: Early air ve	hicles:	3	
т	Balloons, Biplanes and Monoplanes			15%
1	Helicopters; Developments in aerodynamics, aircraft ma	terials,	3	
	aircraft structures & aircraft propulsion.			
	Aircraft Configurations: Different types of flight vehicles and	d their	2	
п	classifications;			_
	Components of fixed wing airplane and their functions;			
	Airfoils, wings and other shapes.		2	15%
	FIRST INTERNAL EXAMINATION			
	Principles of Atmospheric Flight: Physical properties and struct	ture of	3	15%
	the atmosphere:	14:4	2	
III	The Standard Atmosphere, Temperature, Pressure and A	Ititude	2	
	Evolution of theory of lift and drag Maneuvers Concepts of st	ability	3	-
	and control.	uonny	5	
	Introduction to Space Flight: Introduction to basic concepts, the	upper	3	15%
TX 7	atmosphere			
1 V	Space vehicle trajectories-some basic concepts, Kepler's La	ws of	3	
	planetary motion.			
	SECOND INTERNAL EXAMINATION			
	Introduction to airplane structures and materials : General ty	pes of	3	20%
	construction, Monocoque, semi-monocoque.	. 11*		_
\mathbf{V}	Typical wing and fuselage structure. Metallic and non-m	netallic	2	
	Use of aluminium allow titanium stainless steel and con	nosite	2	-
	materials	iposite	4	
	Power plants used in airplanes : Basic ideas about piston turb	opron	3	20%
VI	and jet engines.	r-~r	-	, , ,

Comparative merits, Principles of operation of rocket, types of rockets	3	
and typical applications,		
Exploration into space.	2	

END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100 Exam duration: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

2014

Course of	code.	Course N	ame	L-T-P -C	Y Intro	ear of oduction
AU48	34 M	ICROPROCE	SSOR AND	3-0-0-3		2016
			Prerequisite	: NIL		
Course (Course Objectives					
•	To impart the	e basic concepts o	of microproces	ssors		
•	To impart the	e basic concepts o	of embedded s	ystems		
	AP	AR		KALAN		
Syllabus	ion to miono	nno occorron Intol	9095 mionor	manage Instruction Set	f 0005	Accombly
language	programmin	processors, linter	0 devices	Overview of embedded	DI 8083, Evstem I	ntel 8051
microcor	troller 8051	interfacing Oth	er microcontro	oller architectures: PIC-At	nel AVR	-ARM
merocor		interracing, our				
Expect	ed outcome.	OTAL	1 - 1			
The stude	ents will					
i.	Get idea ab	out Intel 8085 M	licroprocessor	•		
ii.	Be able to o	do assembly lang	uage program	iming		
111.	Gain an ov	erview of embed	ded systems	ad its interfacing		
IV. Toyt Ba	NIIOW ADOL				-	
1. R	amesh S. Gao	onkar. "Micropro	cessor Archite	ecture. Programming, and	Applicati	ons with
tł	ne 8085", Fift	h edition, Prentic	e hall, 2002.	,	-FF	
2. S	hib <mark>u</mark> K.V, Int	roduction to Emb	bedded <mark>S</mark> ysten	ns, Tata McGraw Hill, 200	9	
		V.C				
Referen	nces:					*****
I. A	ditya P. Math	iur, "Introduction	to Microproc	cessors", Third Edition, Tai	a McGra	w-H1ll
	ublishing Co	Ltd., New Delni,	1989.	ong in Process Control" To	to McGra	лл. Ц :11
2. A P	ublishing Co	Ltd New Delhi	1986			tw-1111
3. K	Uma Rao,"T	The 8051 Microco	ontrollers: Arc	chitecture, Programming &	Applicat	tions",
Р	earson, 2010.		Ertel	, 8 8	11	,
4. S	teve Heath, "I	Embedded syster	n design secon	nd edition", Elsevier, 2002		
			Course	e Plan		
Module			Contents		Hours	End Sem. Exam Marks
	Introduction	to microprocess	ors:Microcom	puters and microprocessors,		
I	8/16/32/ 64-b	it microprocessor	families. Intern	al architecture of Intel 8085	7	15%
-	microprocess	or: Block diagram	ns, Registers,	Functional details of pins,		
	Instruction S	Set of 8085: Instr	uction set, Inst	truction tormat, Addressing		
	modes. Machine cycle and instruction cycles, Timing diagrams, Fetch and					
II	II execute operations.					15%
	Assembly La	anguage Program	nming:Data c	opy operations, Arithmetic		
	operations, B	ranching operation	is, Logic and bi	it manipulation instructions		
		FIRST IN	TERNAL E	XAMINATION	1	<u>. </u>
III	Interfacing	I/O devices:	Interrupts,	Programmable interface	7	15%

	devices,Interfacing keyboard and seven segment display, Serial I/O and data communication.		
IV	Overview of Embedded System: Embedded System, Categories of Embedded System, Requirements of Embedded Systems, Challenges and Issues in Embedded Software Development, Major application areas of embedded system.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Intel 8051 microcontroller: Architecture, Memory organization, Registers and I/O ports, Addressing modes, Instruction sets, Assembly language programming.	7	20%
VI	 8051 interfacing:Keyboard, Stepper motor, ADC, DAC, and LCD module interface. Frequency counter and temperature measurement. Other microcontroller architectures: Microchip technology PIC, Atmel AVR, ARM core processors. 	7	20%
	FND SFMFSTFR FXAM		

Question Paper Pattern

Maximum marks: 100

Duration: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI.Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course c	code	Course Name	L-T-P - C	Year	of ction
AU48	6	Noise, Vibration and Harshness	3-0-0-3	2010	5
	-	Prerequisite :	NIL		<u> </u>
Course (Objec	tives			
• T	o imp	art the basics of noise, vibration, sourc	es of vibration and noise in a	automot	oiles
• T	o stuc	ly the effect of noise and vibration on h	uman beings and nature.		
• T	o intr	oduce the methods of measurement of n	oise and vibration.		
• T	o pro	vide knowhow on various methods to re	duce the vibration and noise	•	
Syllabus	. 1			1.0	1 1
Fundame	ntals	of Acoustics and Noise, Vibration - Effe	ects of Noise, Blast, Vibratio	on, and Σ	shock on
People- I	ntroa	action to Transportation Noise and Vibration Transduc	ration Sources – Engine nois	Se - Keu	amonts
Vibration	n Data	Analysis	ers - morse and vibration	wieasui	ements -
VIOLATION		i i marysis			
Expected	l outo	come.			
The stude	ents v	vill			
i. ı	under	stand the sources, effects, prediction, c	ontrol techniques, measuren	nent tech	nniques
	of r	oise, vibration pertain to an automobile			
11. I	know	about reduction of noise and vibration f	rom an automobile.	_	
Text Bo	oks:	a W de Silve "Wibration Monitoring	Testing and Instrumentati	on "CD	C Dragg
1. C		e w. de Silva, vibration Monitoring	, resulig, and instrumental	on ,Cr	C Pless,
2 C	olin F	Hansen "Understanding Active Noise	Cancellation" Spon Press	Londor	2003
2. C 3. K	ewal	Pujara "Vibrations and Noise for Engin	eers. Dhanpat Rai & Sons. 1	.992.	2005
4. Si	ingire	su S.Rao, "Mechanical Vibrations" - Pe	arson Education, ISBM –81	-297-01	79-2004.
Reference	ces:				
	1. A	Allan G. Piersol , Thomas L. Paez "Harr	is' Shock and Vibration Har	ndbook"	,
	Ν	AcGraw-Hill, New Delhi, 2010			
	2. I	Bernard Challen and Rodica Baranescu	- "Diesel Engine Refrence B	ook" -	
	2 1	Second edition - SAE International - ISE	3N 0-7680-0403-9 – 1999.	-1. Th.	
	3. I	David A.Bies and Colin H.Hansen	Engineering Noise Contr	oi: The	ory and
	4 I	ulian Happian-Smith - "An Introduction	n to Modern Vehicle Desig	n"- Rutt	erworth-
	J Н	Jeinemann, ISBN 0750-5044-3 – 2004	ii to widdeini veniele Desig	n Duu	er worth
	5. N	Aatthew Harrison "Vehicle Refinemen	t: Controlling Noise and V	ibration	in
	F	Road Vehicles ", Elsevier Butterworth-	Heinemann, Burlington, 200	4	
		Course	Plan		
			- /		End
Module		Contents		Hours	Sem. Evam
					Marks
	Func	lamentals of Acoustics and Noise,	Vibration: Introduction,		
T	class	ification of vibration and noises: Theo	ory of Sound-Predictions	7	15%
-	and	Measurement, Sound Sources, So	und Propagation in the	,	10/0
	Atm	osphere, Sound Radiation from Structu	res and Their Response to		

	Sound, General Introduction to Vibration, free and forced vibration,				
	undamped and damped vibration, linear and non linear vibration,				
	response of damped and undamped systems under harmonic force,				
	analysis of single degree and two degree of freedom systems				
	Effects of Noise, Blast, Vibration, and Shock on People: General				
	Introduction to Noise and Vibration Effects on People and				
	Hearing Conservation, Noise Exposure, Noise-Induced Annoyance,				
п	Effects of Infrasound, Low-Frequency Noise, and Ultrasound on	7	15%		
11	People, Effects of Intense Noise on People and Hearing Loss,	/	1370		
	Effects of Vibration on People, Effects of Mechanical Shock on				
	People, Rating Measures, Descriptors, Criteria, and Procedures for				
	Determining Human Response to Noise.				
	FIRST INTERNAL EXAMINATION				
	Introduction to Transportation Noise and Vibration Sources, Noise				
	Characteristics of engines, engine overall noise levels, assessment of				
III	combustion noise, assessment of mechanical noise, engine radiated	7	15%		
	noise, intake and exhaust noise, engine accessory contributed noise,				
	transmission noise, aerodynamic noise, tyre noise, brake noise				
	Reduction of noise and vibrations I: Vibration isolation, tuned				
137	absorbers, untuned viscous dampers, damping treatments, application	7	1504		
1 V	dynamic forces generated by IC engines, engine isolation, crank shaft				
	damping, modal analysis of the mass elastic model shock absorbers.				
	SECOND INTERNAL EXAMINATION				
	Reduction of noise and vibrations: noise dose level, legislation,				
	measurement and analysis of noise, measurement environment,				
	equipment, frequency analysis, tracking analysis, sound quality				
V	analysis. Methods for control of engine noise, combustion noise,	8	20%		
	mechanical noise, predictive analysis, palliative treatments and	P			
	enclosures, automotive noise control principles, sound in enclosures,				
	sound energy absorption, sound transmission through barriers				
	Noise and Vibration Transducers, Analysis Equipment, Signal				
	Processing, and Measuring Techniques: General Introduction to				
	Noise and Vibration Transducers, Measuring Equipment,				
	Measurements, Signal Acquisition and Processing, Acoustical				
	Transducer Principles and Types of Microphones, Vibration				
VI	Transducer Principles and Types of Vibration Transducers, Sound	8	20%		
V I	Level Meters, Noise Dosimeters, Analyzers and Signal Generators,	0	2070		
	Equipment for Data Acquisition, Noise and Vibration				
	Measurements, Determination of Sound Power Level and Emission				
	Sound Pressure Level, Sound Intensity Measurements, Noise and				
	Vibration Data Analysis, Calibration of Measurement Microphones,				
	Calibration of Shock and Vibration Transducers.				
END SEMESTER EXAM					

Question Paper Pattern

Maximum marks: 100

Duration: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI.Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course	Course Name	L-T-P-	Ye	ar of			
code		Credits	Intro	duction			
BM482	BIOMEDICAL INSTRUMENTATION	3-0-0-3	20	016			
Dronogui	site • Nil						
Course	Sile : INII						
	bimpart knowledge about the principle and working	of different ty	her of hi	omedical			
• 1 el	 To impart knowledge about the principle and working of unterent types of biomedical electronic equipment/ devices 						
	certoine equipment/ devices.	ATAA					
Syllabus	AFABELLEK	ALAI	VI				
Bioelectr	ic potentials, Electrodes, Transducers, ECG, Pa	cemakers. Def	ibrillator	s. PCG.			
Blood pr	essure. PPG. Pulse oximeters. Holter ECG. Str	ess testing. Pa	atient m	onitoring			
systems,	EEG, EP, EMG, Spirometers, Heart lung mach	ine, Infant inc	ubators,	Infusion			
pumps, A	artificial heart valves, lithotripsy, Surgical diathern	ny, X-ray radio	ography,	CT, US			
and MR i	maging systems.	1 1					
Expected	Outcome						
At the en	d of the course the students will be						
i. Fa	miliar with the principle and applications vari	ous analytical,	diagnos	tic and			
th	erapeutic instruments						
11. K	nowing the different methods and modalities used for	or medical imag	ging.				
Toyt Dog	has the second se						
I ext Doo	KS:	dical Equipme	nt Techn	ology			
JC Pe	earson Education (Singapore) Pyt I td 2001	culcai Equipilie	In I cent	lology,			
	Sarson Education (Singupore) I vi. Edu., 2001.						
Reference	e Books:						
1. B	ronzino, Hand book of Biomedical Engineering, IEB	EE press book.					
2. G	eddes& Baker,' Principles of Applied Biomedical In	nstrumentation'	, Wiley				
3. Jo	hn G Webster (Ed), Encyclopedia of Medical Devic	es and Instrum	entation	,Wiley			
4. R	S Khandpur – Handbook of Biomedical Instrument	ation – Tata Mo	c <mark>G</mark> raw				
5. W	ebster J,' Medical Instrumentation-Application and	Design', John	Wiley				
	ESIQ.						
		Y					
	Course Plan			C			
Mad-1-	Contents		Hereit	Sem.			
Module	Contents		Hours	Exam Morlea			
т	Origin of bigalactric potentials resting and action	n notantials	2	150/			
1	propagation of action potentials - Examples	f bioglactric	5	13 /0			
	propagation of action potentials – Examples of	Flootrodos					
	for manufacture of his potentials	- Electrodes					
	Tor measurement of biopotentials.		2				
	I fansaucers for measurement of temperature,	pressure &	3				
тт	Electrical activity of heart alectrocardiogram 1	ad systems	2	150/			
11	ECG machine block diagram	au systems -	Z	13%0			
	Cardiac nacemakars internal and avtornal	nacemakers	3				
	defibrillators – hasic principles Measurement of h	eart sounds _	5				
	nhonocardiography	cart sounds –					
L	phonocaranographiy						

	Measurement of blood pressure – sphygmomanometer & oscillometric methods. Photo plethysmography - for pulse rate measurement - Pulse oximeters	2	
	Holter recorders. Cardiac stress testing – methods & protocols Patient monitoring systems-Bed side & central station	2	-
	FIRST INTERNAL FYAM		
IV	Electrical activity of brain - Electro encephalogram – EEG	3	15%
	measurement & waveforms - block diagram. Evoked potential -		
	types & applications	1	
	Electrical activity of Muscle – Electromyogram (EMG) – Types of electrodes.	V 1	
	Spiro meter - measurement of respiratory parameters.	2	
III	Heart lung machine, Infant incubators, Infusion pumps, Artificial heart valves - Basic principles & block diagram only.	4	15%
	Lithotripsy – principles, types & applications. Surgical	3	
	diathermy - Basic principles & block diagram only.		
	SECOND INTERNAL EXAM		
V	X-ray radiography - Principles of x-ray generation – Block diagram of x-ray machine - Description. Angiography - Basic principles	3	20%
	X-ray computed tomography - Principle of operation, sectional imaging, scanner configurations. Reconstruction of images - Iterative & Fourier methods	5	
VI	Ultrasonic imaging – Basic principles - Ultrasonic transducers	3	20%
	& Types - modes of image display-Principles & applications.		
	Doppler & colour flow imaging		
	MRI – Basic Principles - FID signal-excitation & emission –	3	
	Basic pulse sequences - Block diagram		
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3 Hours

There shall be three parts for the question paper.

Part A includes Modules 1 & 2 and shall have three questions of fifteen marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Part B includes Modules 3 & 4 and shall have three questions of fifteen marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Part C includes Modules 5 & 6 and shall have three questions of twenty marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Note: Each part shall have questions uniformly covering both the modules in it.

Course co	le Course Name	L-T-P-Credits	Y	ear of
			Intro	duction
BM484	MEDICAL IMAGING & IMAGE	3-0-0-3	2	2016
	PROCESSING TECHNIQUES			
Course Ob	jectives			
• To i	ntroduce the underlying principles of biomedical ir	naging modalities	such as	US, X-
ray,	CT, SPECT, PET and MRI			
• Top	rovide an overview of the image processing techn	iques used in these	images	5
Syllabus	ADI ADI DI L			
Imaging Te	chniques – X-ray - CT, Nuclear medicine imagir	ng modalities - S	PECT a	and PET,
Ultrasound	Imaging - Doppler ultrasound, Magnetic resona	ance imaging -T1	, T2 an	d Proton
density wei	ghted, Thermography and Microwave imaging,	Image sampling a	nd quai	ntization,
Image enha	ncement-spatial and frequency domain methods, In	nage segmentation	-edge b	ased and
region base	1. INNVERNI	Y		
	OTATYLINDI			
Expected C	utcome			
The student	s will be able to			
i. Iden	tify major processes involved in formation of medi-	cal images		
ii. Rec	ognize the imaging modality from their visualizatio	ns		
iii. Clas	sify the various medical image processing algorithm	ns		
iv. Des	cribe fundamental methods for image enhancement	and segmentation		
Reference	Books:	NT X7 1		
I. AC	Kak, Principle of Computed Tomography, IEEE Pr	ress New York	200	2
2. Atai	n P Dhawan, Medical Imaging Analysis, Wiley Int	erscience publicati	on, 200	3
3. DL	Hykes, W R Hedrick &D E Starchman: Ultrasound	Physics &Instrum	entation	1,
Chu 4 Deu	rchill Livingstone, Melbourne, 1985.	John Wiley New	Varla 1	000
4. Dou	glas A Christensen: Ultrasonic Bioinstrumentation,	John Wiley, New	100 100 2	988.
J. Gon	N Penkmen, Hendbook of Medical Imaging D	ig, Addison weste	y.1995	andomia
0. Issa Drog	a 2008	nocessing and Ana	19818, <i>P</i>	Cauenne
7 MN	8, 2000 Pehani: Physics of Medical Imaging Macmillian	India Ltd 1001		
7. IVI N 8. Dete	r Fish The Physics of Diagnostic Illtrasound John	Wiley & sons Eng	land 10	000
0.1	ebb. The Physics of Medical Imaging, IOP Publish	ing I td 1988	Tanu, 15	/90.
10 Tho	mas M. Deserno · Biomedical Image Processing Sn	ringer-Verlag Berl	in Heid	elhero
201	mas M. Deserno . Diomedical image riocessing sp	iniger verlag ben		
201				
	Course Plan			
	2011			Sem.
Module	Contents		Hours	Exam
mouni	Contents		10415	Marks
Ι	X-ray imaging – basic principles of image for	mation – block	3	15%
	diagram of an x-ray machine. Digital radio	graphy - basic		
	principles.			
	X-ray Computed Tomography - basic principles	, contrast scale.	1	
	different generations of CT scanners. basic prin	ciples of image		
	reconstruction.	1		
II	Ultrasonic imaging – Physical principles. Transdu	icer parameters.	1	15%
	Different modes - A-mode, M-mode (echocardios	graph), B-mode.		
	Principles of Doppler ultrasonic imaging.			

	Magnetic Resonance Imaging – Principles of MRI, T1 weighted, T2 weighted and proton density weighted images, applications of MRI	3	
	FIRST INTERNAL EXAM		
III	Nuclear medicine imaging modalities - Emission Computed Tomography – SPECT & PET	4	15%
	Thermography- Physics of thermography, applications of thermography	3	
IV	Image sampling and quantization, Image enhancement in spatial domain-gray level transformations, histogram processing	4	15%
	Smoothing and sharpening, spatial filters	3	
	SECOND INTERNAL EXAM		•
V	Image enhancement in frequency domain- filtering- low pass high pass, band pass and band stop filters	4	20%
	Homomorphic filter, Zooming operation	3	
VI	Image segmentation - detection of discontinuities- point, line, edge, edge-based image segmentation- edge linking and boundary detection	4	20%
	Region based segmentation- region growing, region splitting and merging	3	
	END SEMESTER EXAM		•

Maximum Marks: 100

Exam Duration: 3 Hours

There shall be three parts for the question paper.

Part A includes Modules 1 & 2 and shall have three questions of fifteen marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Part B includes Modules 3 & 4 and shall have three questions of fifteen marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Part C includes Modules 5 & 6 and shall have three questions of twenty marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Note: Each part shall have questions uniformly covering both the modules in it.

Course Code	Course Name	L-T-P	Credits	I	Year of ntroduction
BT362	Sustainable Energy Processes	3-0-0	3		2016
Prerequisi	te: Nil				
Course Ob	jectives				
• To cor sus	introduce the current and potential future oversion, and applications, with emphasis tainable manner.	re energy syste on meeting re	ems, covering gional and gl	g resou obal e	rces, extraction nergy needs in a
Syllabus	TECHNOL	2010	CAT		
Classificati energy, bio systems, en	on of energy, extraction, conversion, and mass energy, fuel cells and hydro-dynami ergy storage.	applications o c systems, me	f solar energ	y, wind rits of	d energy, ocean various energy
Expected of	outcome				
i. Iden ii. Exp iii. Exp iv. Exp v. Exp Reference 1. Ban <i>Tec</i> 2. Boy 3. S P Mct 4. Prat 5. Dor	ho successfully complete this course shound ntify global and Indian energy sources. Iolain capture, conversion and application of Iolain conversion of biomass to energy. Iolain the capture of energy from oceans. Iolain fuel cells and energy storage routes. Books Iolain fuel cells and energy storage routes. Books Iolain K, Kleemann M, Michael Meliss, R Innology, Tata McGraw Hill publishing Co Iole, Godfrey, Renewable Energy, 3/e, Oxfo Sukhatme, Solar Energy - Principles of T Graw- Hill Publishing company, New Del mod Jain, Wind Energy Engineering, McC and L Klass, Biomass for Renewable Energy Course	Id be able to of solar and win enewable Ener ompany, New I ord University thermal Collec hi, 1996. Graw Hill, 201 rgy, Fuels and Plan	nd energy. rgy Sources of Delhi, 1990. Press, 2012. tion and Stor 1. <u>Chemicals</u> , P	& Con age, 2 Acader	version /e, Tata nic Press, 1998
Module	Contents		He	ours	Sem. Exam Marks
Ι	General classification of energy. Co conventional. Renewable and non-ren Indian energy sources. Global a consumption. Problems of fossil fuels. E of energy utilization. Energy and sust Energy planning. Renewable energy achievements and applications.	onventional an newable. Glob and Indian Environmental ainable develo sources, pot	d non- bal and energy aspects opment. tentials,	7	15%
II	Solar energy . Solar radiation. Solar t plate and concentrating collectors. Solar pond. Solar cookers. Solar dryers. S power plant. Solar photovoltaic conver and thin film technology. Solar cells power generation. Hybrid systems. Men solar energy.	hermal systen ar desalinatior olar thermal rsion. Semico s. Solar photo rits and limitat	ns. Flat n. Solar electric nductor ovoltaic tions of	7	15%

FIRST INTERNAL EXAM

v p a:	ertical axis-design principles of wind turbine. Wind power lants, Wind energy storage. Safety and environmental spects. Merits and limitations of wind energy.		
IV B te g eı b p	Biomass energy. Biomass resources, Biomass conversion echnologies-direct combustion, pyrolysis, biomass asification. Biogas production. Biomethanation as an aid to nvironment improvement. Bioethanol, biodiesel and iobutanol production. Hydrogen as fuel. Biohydrogen roduction. Storage of hydrogen.	7	15%
	SECOND INTERNAL EXAM		
V E T H n h	Energy from the oceans. Ocean thermal electric conversion. Fidal energy conversion. Geothermal energy conversion. Hydro power-global and Indian scenario. Positive and egative attributes of hydropower. Electricity from ydropower. Small hydropower.	7	20%
VI F M P s c	Suel cells. Alkaline fuel cells. Phosphoric acid fuel cell. Molten carbonate fuel cell. Solid oxide fuel cell, Solid olymer electrolyte fuel cell. Magneto-hydrodynamic ystems. Electric vehicles. Energy storage routes like thermal, hemical, mechanical, electrical storage. Batteries.	7	20%

Maximum Marks: 100

Exam Duration: 3 hours

The question paper consists of Part A, Part B and Part C.

Part A consists of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer two questions $(15 \times 2=30 \text{ marks})$.

Part B consists of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer two questions $(15 \times 2=30 \text{ marks})$.

Part C consists of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer two questions $(20 \times 2 = 40 \text{ marks})$.

For each question there can be a maximum of 4 subparts.

Course Code	Course Name	L-T-P	Credits	Year of Introduction
BT461	Design of Biological Wastewater Treatment Systems	3-0-0	3	2016
Prerequisi	te : Nil			

Course Objectives

• To provide the necessary theoretical background for the design of most common biological waste treatment systems.

Syllabus

Characteristics and *impacts of wastewater on* the environment, basic design considerations, types of biological treatment processes and reactors, aerobic suspended growth systems, anaerobic digesters, design consideration for upflow anaerobic sludge blanket reactors, biogas production.

Expected outcome

A student who successfully completes this course will be able to

- i. Explain the characteristics of wastewater.
- ii. Identify different types of reactors for wastewater treatment.
- iii. Design a completely mixed activated sludge system.
- iv. Explain the design features of an upflow anaerobic sludge blanket reactor.
- v. Explain the factors affecting biogas production.

Reference Books

- 1. G Karia, R A Christian, Wastewater Treatment: Concepts and Design Approach, 2/e, PHI Learning Pvt., Ltd., 2013.
- 2. P Venugopala Rao, *Textbook of Environmental Engineering*, Prentice-Hall of India Pvt. Ltd., 2002.
- 3. Metcalf & Eddy, *Wastewater Engineering: Treatment and Reuse*, 4/e, Tata McGraw-Hill Education, 2003.
- 4. M Narayana Rao, Amal K Datta, *Waste Water Treatment: Rational Methods of Design and Industrial Practices*, 3/e, Oxford & IBH Publishing Company Pvt. Ltd., New Delhi,
- 5. R S Khoiyangbam, Navindu Gupta, Sushil Kumar, *Biogas Technology: Towards Sustainable Development*, The Energy and Resources Institute (TERI), 2011.

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
Ι	Wastewater-origin, characteristics, <i>impacts of wastewater</i> on the environment, basic design considerations-estimation of wastewater quantities, variation in wastewater flow rates- average daily flow, maximum daily flow, peak hourly flow, minimum daily flow, minimum sheet, reactor considerations.	5	15%		
П	Objectives and fundamentals of biological treatment, types of biological treatment processes, types of reactors used for wastewater treatment process, kinetics of biological treatment systems-batch and continuous systems, biological nitrogen removal, biological phosphorous removal.	5	15%		
	FIRST INTERNAL EXAM				

III	Aerobic suspended growth systems-Conventional activated sludge processes and its modifications-theoretical principles, design of completely mixed activated sludge system, F/M ratio, hydraulic loading, MLSS, MLVSS, sludge age, sludge return, calculation of the reactor volume, production and removal of excess sludge, sludge volume index, Solids Retention Time (SRT) or Mean Cell Residence Time, oxygen requirements.	8	15%
IV	Aerobic attached growth system-Trickling filters-theoretical principles, classification, design principles, process design considerations, Oxidation ponds-construction and design considerations, aerobic sludge digestion, waste stabilization ponds, oxidation ditches-theory and design, factors affecting the design, theory and design of rotating biological contactors	8	15%
	SECOND INTERNAL EXAM		
V	Fundamentals of anaerobic treatment, types of anaerobic digesters-conventional systems, high-rate systems and combined treatment systems, design of upflow anaerobic sludge blanket reactors, anaerobic sequencing batch reactor, anaerobic filters-upflow and downflow anaerobic filters, sludge treatment and disposal, sludge digestion, sludge drying, sludge conditioning, sludge drying characteristics.	8	20%
VI	Biogas technology-microbiology of biogas production, process parameters for a biogas plant, biogas yield from different substrates, methods to enhance biogas production- effect of heating, insulation and stirring on gas production, basic components of a biogas plant, biogas plant designs- continuous type plants, semi-continuous plants, fixed dome type, floating gasholder digester (KVIC),kinetic models for predicting biogas production, design equations of biogas plants.	8	20%

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3 hours

The question paper consists of Part A, Part B and Part C.

Part A consists of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer two questions $(15 \times 2=30 \text{ marks})$.

Part B consists of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer two questions ($15 \times 2=30$ marks).

Part C consists of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer two questions $(20 \times 2 = 40 \text{ marks})$.

For each question there can be a maximum of 4 subparts.

Course	Course Code Course Name L-T-P-Credits			Yea Introd	ar of luction	
CE4	CE482 ENVIRONMENTAL IMPACT ASSESSMENT 3-0-0-3		2()16		
Prerequis	Prerequisites: Nil					
Courseob	jectives:	DIADDUU		N		
• To	study the	e various types of environmental pollution	KALA	\mathbb{N}		
• To	study the	e impact of various types of pollutants an	d their assessment	techniques		
Syllabus:		LININGEO	ITV	1.4.5		
Pollution, of water p Impacts, p adopted, B	Types. A pollutants positive a EIA proce	Air pollution-sources, effects, types of po , Solid wastes, sources, types, soil pollut nd negative Environmental impact assess dure in India, Case studies.	ollutants. Water pollutants. Water pollion, pesticide poll sment, steps of do	ollution, cha ution. Nois ing EIA, m	aracteristics e pollution, ethodology	
Course O	utcomes	:				
	• The	e students will have a basic knowledge o	f various pollution	sources an	d their	
Tarit Daala	1mp	bacts				
 D.C.Fullmar, Waste Water Engineering , Laxin Fubications FV. Etd, Dr. PN Modi, "Sewage Treatment & Disposal and Waste water Engineering", Standard Book House, New Delhi John Glasson, Riki Therivel & S Andrew Chadwick "Introduction to EIA" University College London Press Limited Larry W Canter, "Environmental Impact Assessment", McGraw Hill Inc., Newyork. Mackenzie L Davis, Introduction to Environmental Engineering, McGraw hill Education (India) Peavy H S, Rowe, D.R. Tchobanaglous "Environmental Engineering" Mc Graw Hill Education Rau G J and Wooten C.D "EIA Analysis Hand Book" McGraw Hill 				", Standard University wyork. l Education Graw Hill		
COURSE PLAN						
Module		Contents		Hours	End Sem. Exam Marks %	
I	INTRO AIR Po pollutan Impact o Ambien	DUCTION: Classification of Pollution OLLUTION: Primary and Secondary ts-sulfur dioxide- nitrogen dioxide, c of air pollutants on human, vegetation a t Air Quality Standards	n and Pollutants, 7 Pollutants, air arbon monoxide, nd environment, ,	7	15	
п	WATER Major l characte	R POLLUTION: Point and Non-point So Pollutants of Water, Physical, chemica pristics of water, Water borne disease	burce of Pollution, al and biological es, Water Quality	7	15	

standards

FIRST INTERNAL EXAMINATION					
ш	SOLID WASTE: Classification and sources of Solid Waste, Characteristics of Solid Waste, e waste, Radioactive wastes LAND/SOIL POLLUTION: Effects of urbanization on land degradation, Impact of Modern Agriculture on Soil, pesticide pollution, Effect on Environment	6	15		
IV	NOISE POLLUTION: Sources of Noise, Effects of Noise, measurement of noise, Equivalent sound pressure level, Control measures	6	15,		
	SECOND INTERNAL EXAMINATION				
VImpacts of pollutants, types, scale of impact-Global, local pollutants. Climate change, Ozone layer depletion, Deforestation, land degradation Environmental impact assessment, Need for EIA,20					
VI	EIA Procedure-Screening, Scoping, EIA procedure in India, Impact analysis- checklists, matrix methods, overlay analysis, Case studies of EIA	8	20		
	END SEMESTER EXAMINATION				

QUESTION PAPER PATTERN (External Evaluation) :

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V &VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

14

CE484 APPLIED EARTH SYSTEMS 3-0-0-3 2016	Course Code	Course Name	L-T-P-Credits	Year of Introduction
	CE484	APPLIED EARTH SYSTEMS	3-0-0-3	2016

Prerequisites: Nil

Course objectives:

- Appreciation of earth as a system of interrelated components
- Understanding mechanisms that give rise to oceanographic and atmospheric phenomena
- Comprehension of processes that result in characteristic land features in different climatic regimes

Syllabus :

Fundamental concepts of equilibrium - Geomorphic agents and processes -Earth systems -climate change - Weathering- Fluvial processes- Stages of stream development- Drainage patterns - Soil-Deserts- Wagner's ideas of continental drift, Plate Tectonics- Basics of oceanography-. Basic ideas about plankton and primary productivity -Basics of atmosphere and atmospheric processes - Heat budget- Fundamental concepts of precipitation, global wind patterns.

Expected Outcomes:

- **i.** The students would understand the roles of surface and sub surface phenomena in shaping surface features of earth
- **ii.** The course would appreciate the ramifications of any atmospheric, oceanographic or land process on other component subsystems including biosphere.

Text Books / References:

- 1. Critchfield H J , General Climatology Prentice Hall, New Delhi, 1983
- 2. Fetter C W, Applied Hydrogeology CBS New Delhi, 1990
- 3. Carlson, D H, Plummer, CC and McGreary, D, *Physical geology: Earth Revealed* McGraw Hill, New York, 2006
- 4. Pinet P R, Oceanography An Introduction to the Planet Oceanus, West Publishing Co., 1992
- 5. Valdiya K S, Environmental Geology: Ecology, Resource and Hazard Management McGraw-Hill Education (India) Private Limited, New Delhi, 2013

OURSE PLAN			
Module	Contents	Hours	End Sem. Exam Marks %
Ι	Fundamental concepts of equilibrium. Geomorphic agents and processes. Basic concept of Earth as a system and its component sub systems. Climate Change vis-a-vis the interrelationships of the subsystems- Green House Effect and Global warming, basic ideas about their causes and effects.	7	15
II	Weathering- relevance, influence of and on earth systems, types and controlling factors Fluvial processes-hydrological cycle, fluvial erosion, transportation and deposition, fluvial landforms. Stages of stream development; Drainage patterns.	7	15
	FIRST INTERNAL EXAMINATION	-	
III	Soil- formation and controls, soil profile, soil erosion and conservation methods. Deserts-distribution and controls.	7	15
IV	Wagner's ideas of continental drift, Plate Tectonics- seafloor spreading. Plate boundaries and their features, mechanisms of plate movements.	7	15
	SECOND INTERNAL EXAMINATION		
V	Basics of oceanography: coastal upwelling and downwelling. Outlines of ocean floor topography, Brief account of marine sediments, turbidity currents, basic outlines of origin and circulation of deep sea surface currents (Atlantic and Pacific Oceans), coral reefs- types and concepts about their formation. Basic ideas about plankton and primary productivity.	7	20
VI	Basics of atmosphere and atmospheric processes: Structure and composition of the atmosphere. Heat budget, factors affecting solar radiation. Fundamental concepts of precipitation, global wind patterns.	7	20

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN (End Semester Exam)

Maximum Marks : 100 Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V &VI : 2 questions out of 3 questions carrying 20 marks each
- Note: 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	Course Name	L-T-P-C	Y Intr	ear of coduction	
CE486	GEOINFORMATICS FOR INFRASTRUCTURE MANAGEMENT	3-0-0-3		2016	
Prerequisites: Nil					
Course ob	jectives:				
• To	expose the concept of GIS and Remote sensing	IAN	1		
• 10 Syllab	introduce the applications of GIS and Remote sensing for	infrastructure	e manag	gement	
Remot	e Sensing - Energy sources and radiation principles - Da	ata acquisitio	n - M	ultispectral.	
Therma	and Microwave remote sensing -; Elements of visual image	age interpreta	tion- I	ntroduction	
to Digi	tal Image processing - Coordinate Systems – Map projection	s - GIS: Compo	onents o	f GIS - Data	
input a	nd editing –GIS output- Data visualization -Digital Elevati	ion Models a	nd Dig	ital Terrain	
Models Course Or	- Mapping - Site suitability analysis - Network Analysis		_		
The studer	ts will				
• Un	lerstand various satellite data products and their uses.				
• Kn	ow about the Geospatial data and its importance in Spatiala	analysis.			
• Ap	bly Geoinformatics techniques in various engineering app	plications and	l for in	frastructure	
dev	elopment.	50			
Text Books1. But	/ References: rough P.P. &McDonnel, R.A. (1998) Principles of GIS, O	xford Univer	sity Pre	SS	
2. Ch	ing, K (2008), Introduction to Geographic Information Sys	stems, Tata M	cGraw	-Hill	
5. Da 4 FF	Sabins(Ir) Remote Sensing : Principals and Interpr	retation Free	man &	Co San	
Fra	ncisco, 1978	ciation, Tree		. co., ban	
5. Jos	eph, G., Fundamentals of Remote Sensing, Universities Pro	ess (2003)			
6. Ke	th P.B., Thompson et. Al. (Ed.), Remote Sensing and	Water Resou	rces M	anagement,	
An 7 Ka	erican Water Resources Association, Urbana Illinois, 1973	3. in Civil En	ainaari		
J. Ke	versity Press (1985)		gineen	ing, Surrey	
8. Lo,	C.P. and Albert Yeung, Concepts and Techniques of GIS	, Prentice H	all, 2 nd	Ed. 2006	
9. M	Anji Reddy(2001), Remote Sensing and Geographic	<mark>c Info</mark> rmatio	n Syst	ems, B S	
Publications, Hyderabad					
10. Panigrahi, N (2008), Geographical Information Science, University Press					
Photogrammetry and Remote Sensing, Falls Church, Va. (1983)					
12. Schowengerdt, R. A.,Remote sensing, Models and Methods for image processing, Academic					
Pre	ss (2009)				
13. T.M. Lillesand and R.W.Kiefer, Remote Sensing and Image Interpretation, John Wiley and					
SOIIS, 1979 COURSE PLAN					
	COURSETEAN			End Som	
Module	Contents	H	lours	Exam Marks %	
Ι	Remote Sensing: Energy sources and radiation pr Interaction of EM energy with atmosphere and surface	rinciples- features.	7	15	

	spectral reflectance patterns, Data acquisition - Multistage and multispectral remote sensing concept		
П	Classification of Remote sensing systems - Optical, Thermal and Microwave remote sensing. Image Interpretation: Elements of visual image interpretation – Image interpretation keys - Introduction to Digital Image processing.	7	15
	FIRST INTERNAL EXAMINATION	A. /A	
ш	CoordinateSystems:Geographiccoordinatesystems-approximationsofearth,ellipsoidandgeoidmodels,geodeticdatumandverticaldatum,coordinatetransformation,Mapprojections-concepts,properties,andtypes.	7	15
IV	GIS: Geographical concepts and terminology, Components of GIS, Spatial and non-spatial data, Vector and raster data; Methods of data input, Spatial data editing; Vector data analysis-buffering, overlay, slivers; Raster data analysis- categories; GIS output: cartographic and non-cartographic output	7	15
V	Digital Elevation Models and Digital Terrain Models; Land use/ Land cover mapping, Ground Water Potential Zonation Mapping, Hazard Zonation Mapping.	7	20
VI	Site suitability analysis for Residential area, Industrial area, Recreational Area, Solid Waste Disposal, Water treatment plant Network Analysis- Water supply line, Sewer line, Power line, Telecommunication,Road network	7	20
	END SEMESTER EXAMINATION		

QUESTION PAPER PATTERN (End semester examination)

Maximum Marks : 100

Duration : 3 hours

2014

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V &VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course C	ode	Course Name	L-T-P-Credits	Year Introdu	of ction
CE488	8	DISASTER MANAGEMENT	3-0-0-3	201	6
 Course Objectives To provide an overview of the common hazards and their dynamics To inculcate the basic concepts of disaster management 					
Syllabus		APLABDUI	KALA	M	
Fundamer componen hazard, v Disasters - of Impact atmospher	ntal co t sub ulner - Eart s - A ric po	oncepts of hazards and disasters - Basi systems Climate Change - Introduct ability, exposure, risk, crisis, emergen h quakes, Landslides. Floods, Coastal di Anthropogenic Disasters - Soil degra- llution -Hazard and disaster managemen	ic concept of Ear ion to key concept icies, Disasters, sasters, Tidal wa dation and dese t plans for floods,	th as a system ots and termin Resilience - ves, Tsunamin rtification -w tidal waves.	n and its hology of Natural s. Nature ater and
Expected	Outc	ome			
The studer i. get ii. und cor	nts wi : gene dersta nmor	II ral ideas about the processes involved in and the concepts of disaster management a episodes of disasters	natural and anth t and measures t	ropogenic disa o mitigate and	asters d contain
References	:	1	-		
1. An sor 2. Ari Ha 3. Bel SPO 4. Bos	 Andrew, S., "Environmental Modeling with GIS and Remote Sensing", John Willey and sons, 2002 Ariyabandu, M. and Sahni P. (Eds), "Disaster Risk Reduction in South Asia", Prentice- Hall (India), 2003. Bell, F.G., "Geological Hazards: Their assessment, avoidance and mitigation", E & FN SPON Routledge, London. 1999 Bossler, J.D., "Manual of Geospatial Science and Technology", Taylor and Francis, 				ley and entice- & FN is,
5 Da	vid A	lexander "Natural Disasters" Research l	Press New Delhi	1993	
6. Ma 200	otthew)2	vs, J.A., "Natural hazards and Environme	ental Change", Bil	l McGuire, Ia	n Mason,
7. Nic De 8. Un Ma	ck Ca velop ited inual	rter. W., "Disaster Management - A l ment Bank, Philippines. 1991 Nations , Mitigating Natural Disasters for policy makers and planners, New Yor	Disaster Manage , Phenomena, E rk, 1991	r's Handbook ffects and op	x". Asian otions, A
		COURSE PLAN	1		
Module		Contents		Hours	End Sem. Exam Marks
Ι	Fund key expo Basi syste subs	damental concepts of hazards and disast concepts and terminology of haz osure, risk, crisis, emergencies, Disasters, c concept of Earth as a system and ems. Climate Change vis-a-vis the inter ystems- Green House Effect and Glob	ters: Introduction ard, vulnerabili Resilience. its component s relationships of t pal warming, bas	to ty, 7 ub he sic	15%

	ideas about their causes and effects.		
II	Types of Natural Disasters I- Earth quakes, Landslides. Nature of impacts.	7	15%
	FIRST INTERNAL EXAMINATION		
III	Types of Natural Disasters II- Floods, Coastal disasters- Cyclones, Tsunamis. Nature of impacts.	7	15%
IV	Types of Anthropogenic Disasters I- soil and soil degradation, desertification.	7	15%
	SECOND INTERNAL EXAMINATION		
v	Types of Anthropogenic Disasters II-Fundamental concepts of water and atmospheric pollution.	7	20%
VI	Hazard and disaster management plans for floods, tidal waves.	7	20%
	END SEMESTER EXAMINATION		

QUESTION PAPER PATTERN (End Semester Examination)

2014

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V &VI : 2 questions out of 3 questions carrying 20 marks each
- **Note** : 1.Each part should have at least one question from each module 2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course	Code	Course Name	L-T-P-Credits	Year o Introduc	of tion
CE4	94	ENVIRONMENTAL HEALTH AND SAFETY	3-0-0-3	2016	
Pre-requi	sites: Nil			_	
Courseob	jectives:	PLABDII	KATA	M	
• To	introduc	e the different types of hazards in industr	ies and the manag	ement of hazar	ds.
• To	learn the	various types of pollution.	GICA		
Syllabus:		LINIVERS	ITY		
Occupatio Industrial noise-effe pollution,	nal health hygiene, cts, sourc Hazardou	n and toxicology- Lead-nickel, chromiun Physical, chemical and biological haz e, Electrical Hazards and Hazards in Co as Waste Management, pollution control	n and manganese t zards, Safety and nstruction Industry in different industry	oxicity-gas po Health Mana y, Air pollution ries	visoning- agement, n, Water
Expected	Outcom	es:			
i. Be	able to	understand the various occupational h	azards and the te	echniques that	can be
ade	opted for	managing hazards and related problems		eeninquee ana	
ii. Be	come av	vare regarding air pollution and water p	ollution problems	and pollution	n control
in	indu <mark>strie</mark> s	3			
Text Book	s / Refere	nces:			
1. Ge	rard Kiel	y, Environmental Engineering, McGraw	hill Education		1
2. Ma (In	ackenzie dia)	L Davis, Introduction to Environmenta	al Engineering, M	lcGraw hill E	ducation
3. Na	tional Sa	fety Council, Hand book of Occupationa	I Safety and Healt	h, Chicago, 19	982
4. R.	K.Jain an	d Sunil S.Rao, Industrial Safety, Health	and Environment	Management S	Systems,
Kh	anna pub	l <mark>ishers , New Delhi (2</mark> 006)			
5. S.I	P.Mahaja	n, "Pollution control in process indus	stries", Tata Mc	Graw Hill Pu	ıblishing
Co	mpany, N	New Delhi, 1993	1 1 1 11		
6. Slo	ote.L, Hai	ndbook of Occupational Safety and Healt	h, John Willey and	d Sons, New Y	ork
		COURSE PLAN			
					End
Module		Contents		Hours	Sem. Exam Marks
Ι	Occupat silicosis mangan local, sy Industria	ional Health And Toxicology : occupation, asbestosis, pneumoconiosis, etc. lead, n ese toxicity, effects and prevention –In stemic and chronic effects, temporary an al Hygiene.	onal related diseas ickel, chromium a ndustrial toxicolo d cumulative effec	es, ind gy, 7 cts.	15%

Ш	Noise, noise exposure regulation. Ionizing radiation, types, effects. Chemical hazards-dust, fumes, mist, vapour, fog, gases, Methods of Control. Biological hazards-Classification of Biohazardous agents – bacterial agents, viral agents, fungal, parasitic agents, infectious diseases.	7	15%
	FIRST INTERNAL EXAMINATION		
III	Radiation and Industrial Hazards, Types and effects of radiation on human body, disposal of radioactive waste Air Pollution - air pollutants from industries, effecton human health, animals, Plants and Materials - concept of clean coal combustion technology - depletion of ozone	6	15%
IV	Electrical Hazards, Protection against voltage fluctuations, Effects of shock on human body. Introduction of Construction industry, Scaffolding and Working platform, Welding and Cutting, Excavation Work, Concreting and Cementing work, Transportation of men and material,	6	15%
	SECOND INTERNAL EXAMINATION		
V	Water Pollution -water pollutants-health hazards - effluent quality standards,tannery, textile effluents Hazardous Waste Management -waste identification, characterization and classification, health hazards-toxic and radioactive wastes- recycling and reuse.	8	20%
VI	Pollution Control In Process Industries - Pollution control in process industries like cement, paper, petroleum products-textile, tanneries- thermal power plants – dyeing and pigment industries - eco-friendly energy.	8	20%
	END SEMIESTER EXAMINATION		

ESTO.

QUESTION PAPER PATTERN (External Evaluation) :

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V &VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Cours	course Name	L-T-P- Credits	Y	ear of		
CH48	2 PROCESS UTILITIES AND PIPE LINE DESIGN	3-0-0-3		2016		
Prerec	uisite : Nil					
Cours	e Objectives					
1. 2.	 To impart the basic concepts of project engineering To develop understanding about process auxiliaries and utilities in process industries 					
Syllab		AA	A			
Proces	s Auxiliaries. Piping design, Piping insulation, Piping fittings	s, Valves,	Pumps	, Process		
control	and instrumentation diagram.	D	fath a d	f		
vacuur	a development and their limitations materials handling under	Pumps, N	/lethous Refrige	s of eration		
and Ch	illing systems, Oil heating systems, Nitrogen systems	vacuum.	Reinge	Julion		
Expec	ed Outcome					
After s	uccessful completion of the course the students will be able to)				
	i. Acquire the overall knowledge about the process plant.					
-	i. Understand the importance of process auxiliaries and ut	ilities in p	rocess	industries.		
i	i. Learn the conceptual design of chemical process plant.					
1	v. Build a bridge between theoretical and practical of auxiliaries and utilities in any process industry	concepts	used f	or process		
Refere	nces:	-				
1	E.C. Viknandt and C.E. Dryden "Chamical Engineering Pla	nt Degion	" MaC	morry TT:11		
1.	F.C. Viorandi and C.E. Dryden, Chemical Engineering Pla.	nt Design	, MCG	raw пш,		
2.	Jack Broughton; Process utility systems; Institution of Chem	. Engineer	s, U.K			
3.	M.S. Peters and Timmerhaus, "Plant design and Economics	for Chem	ical Er	igineers",		
	Mc Graw Hill 3rd Edition.	1	ъ .			
4.	Roger Hunt and Ed Bausbacher, "Process Plant layout a	and Pipin	g Desi	gn'' PTR		
	Course Plan		-			
Mod	Fetd	19		Sem.		
nie Nie	Contents	H	ours	Exam		
uite				Marks		
	process Auxiliaries: Basic considerations and flow diagram	ns in				
	material pipe sizes working pressure Basic principles of p	ining				
	design piping drawings pipe installations over	iping bead				
Ι	installations Process steam piping selection and determin	ation	7	15		
	of steam – pipe size. Piping insulation, application of p	ining				
	insulation, weather proof and fire resisting pipe insulation					
	iackets, piping fittings, pipe joints					
	Valves: Types of valves, selection criteria of valves for va	rious				
	systems. Pumps: Types of pumps, NPSH requirement, p	oump				
II	location, pump piping, pump piping support. Process contro	l and	7	15		
	instrumentation diagram, control system design for pro-	ocess				
	auxiliaries.					

	FIRST INTERNAL EXAMINATION					
III	Process Utilities: Process Water: Sources of water, hard and soft water, Requisites of industrial water and its uses, Methods of water treatment, Chemical softening, Demineralization, Resins used for water softening, Water for boiler use, cooling purposes, cooling towers, drinking and process water treatment, reuse and conservation of water, 27 50% water resources management, waste water treatment and disposal.	7	15			
IV	Steam: Steam generation and its application in chemical process plants, distribution and utilization, boilers, design of efficient steam heating systems, steam economy, condensate utilization, steam traps, their characteristics, selection and application, waste heat utilization	7	15			
	SECOND INTERNAL EXAMINATION		-			
V	Compressors and Vacuum Pumps: Types of compressors and vacuum pumps and their performance characteristics, Methods of vacuum development and their limitations, materials handling under vacuum, lubrication and oil removal in compressors and pumps, instrument air.	7	20			
VI	Nitrogen systems.	7	20			
	END SEMESTEREXAMINATION		END SEMESTEREXAMINATION			

Question Paper Pattern:

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x 20 = 40 Marks)

Course	Course Name	L-T-P- Credits	Yea	r of uction
CH484	FUEL CELL TECHNOLOGY	3-0-0-3	2016	
Prerequisit	e : Nil			
Course Ob	iectives			
• To e	xpose the students to the fundamental knowledge	required in	the develo	opment
of fu	el cell technology.	1		1
Syllabus	IDI IDDITI II	1 T A		
Introduction	to Fuel Cells and Fuel Cell Technology, Genera	l Thermod	ynamics,	Reaction
Kinetics, C	harge and Mass Transport, Overview of Fuel Ce	ll Types, S	Stack Desi	gn, Fuel
Cell Charac	terization, Hydrogen Economy.	. (AL	
Expected C	f the course the students will be able to:	1101		
1 Kno	w the fundamentals of electrochemistry thermody	namics flu	uid mechai	nics and
heat	and mass transfer appropriate for the design or r	review of a	component	ts of fuel
cells	and fuel cell systems.		b	
2. Ana	yze the fuel cell technology and compare differen	t types of f	uel cell sy	stems.
3. Calc	ulate the various losses in fuel cells and analyze th	ne fuel cell	power pla	nt
subs	ystems.			
4. Defe	end the significance of fuel cell technology in the r	new global	energy sce	enario.
5. Dist	inguish the expectances of hydrogen as a fuel and	energy vec	tor in the o	context
of re	newable energy.	50		
References	Books:			0
1. And	reas Zuttel; Andreas Borgschulte; Louis Schdap	ptach, Hyc	rogen as	a future
ener	gy carrier, Wiley-VCH Verlag GmbH & Co., KGa	A, Weinhe	2008.	
2. Cost	amagna, P.; Srinivasan, S, J Power Sources 2001,	102, 242-2	.09)5	
5. Frail	Call Handbook 7the Edn. EG & G Tachnical Ser	vices Nev	2004	
5 Hor	leski M E Alternative Eucls: The Euture of Hy	drogen T	2004 1e Fairmo	nt Press.
Lilb	urn GA 2007	ulogen, 11		III I 1055.
6. Koro	lesch, K.: Simader, G. Fuel Cells and Their Applic	cations. VC	CH: 1996	
7. Larr	ninie, J.; Dicks, A. Fuel Cell Systems Explaine	d. John W	/iely & S	ons Ltd:
Chic	hester, 1999.			
8. Ryan	n P. O'Hayre, Suk-Won Cha, Whitney Colella	& Fritz B	. Printz, F	Fuel Cell
Fund	lamentals, John Wiley & Sons, Inc., New Jersey, 2	2006		
9. Viel	stich, W, Gasteiger, H. A. Lamm, A. (Eds)):Handbool	k of Fue	el Cells-
Fund	lamentals, Technology and Applications. John W	<mark>iely & S</mark> o	ns Ltd: N	Y, 2003;
Vols	11-4			
	Course Plan			a
Module	Contents		Hours	Sem. exam
		1		marks
	Introduction: Fuel Cell, Brief History of fu	uel cells,		
I	Cell and conventional processes – comparison	Energy &	7	15%
1	power relations, units. Application scenarios. Ac	lvantages	,	15/0
	and disadvantages.			

	General Thermodynamics: Enthalpy-Heat potential of		
	fuel, Gibb's free energy-Work potential of fuel,		
	Reversible voltage - NERNST Equation, Voltage and P,		
	T and concentration dependence – examples, Faraday's		
	Laws, Efficiency: thermodynamic, voltage and fuel.		
	Reaction Kinetics : Electrochemical reaction		
	fundamentals, electrode kinetics, Charge transfer and		
	activations energy, Exchange current density - slow and		
т	fast reactions, Potential and equilibrium - galvanic	7	150/
11	potential, Reaction rate and potential - Butler Volmer		15%
	equation & Tafel equation, Electrocatalysts and reaction	A T	
	kinetics - typical exchange current densities, Electrode	AL	
	design basics	A day	
	FIRST INTERNAL EXAMINATION		
	Charge and Mass Transport: Charge transport		
	resistances, voltage losses, Ionic and electronic		
	conductivites, Ionic conduction in different FC		
	electrolytes: Aquesous, polymeric and ceramic, Diffusive	7	200/
III	transport & voltage loss: Limiting current density,	/	20%
	Nerstian and kenetic effect, Convective transport: flow		
	channels, gas diffusion / porous layer, gas velocity,		
	pressure, Flow channel configurations		
_	Overview of Fuel Cell Types: PAFC, PEMFC, AFC,		
	MCFC, SOFC. Major Cell Components, Material	-	2004
IV	Properties, Processes and Operating Conditions of		20%
	PEMFC.		
	SECOND INTERNAL EXAMINATION		
	Stack Design: Sizing of a Fuel Cell Stack, Stack		
	Configuration, Uniform distribution of Reactants, Heat		
X 7	removal, Stack Clamping	7	150/
v	Fuel Cell Diagnostics: Polarization Curve, Current	/	15%
	Interrupt, AC Impedance Spectroscopy, Pressure drop as		
	a diagnostic tool.	7	
	Fuel Cell System Design: Hydrogen-Oxygen Systems.		
	Hydrogen-Air Systems, Fuel Cell Systems with Fuel	A	
X 7 T	Processor, System Efficiency	7	150/
V1	Fuel Cells and Hydrogen Economy: Hydrogen Energy	/	15%
	Systems, Hydrogen Energy Technologies, Transition to		
	Hydrogen Economy		
	END SEMESTER EXAMINATION	•	
<u> </u>			

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x20= 40 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

COURS	SE		LTDC		YEAR (DF
CODI	E.	COURSE NAME	L-I-P-C	INI	RODUC	TION
EC48	2 	Biomedical Engineering	3-0-0-3		2016	
Prerequis	site: N	111				
Course of	bjecti	ves:				
• To int	roduc	e basics of biomedical engineering techr	ology			
• 10 un	dersta	nd the anatomy & physiology of major s	systems of the	body 1	n designi	ng
equipr	nent I	or medical treatments.	6 1:66	4	- f 1 :	. 1 1
• 10 im	part K	nowledge about the principle and working	ng of different	types	of b10-m	edical
Syllobus		Juipinenvdevices.				
Synabus:	odv o	verview Physiological systems of b	ody Massura	mont	of physi	ological
narameter	ouy-0	sisting and therapeutic devices Medical	laboratory eq	ninme	or pirysi nts Telei	metry in
parameter patient car	re Pat	ient safety Medical imaging system	laboratory eq	uipine		incu y in
Expected	outco	me:				
The stude	nts wi	ll be able:				
i. To	o unde	rstand diagnosis and therapy related equ	ipments.			
ii. To	o unde	rstand the problem and identify the nec	essity of equip	ment	for diagn	osis and
the	erapy.				-	
iii. To	o unde	rstand the importance of electronics eng	ineering in me	dical f	field.	
iv. To	o unde	rstand the importance of telemetry in pa	tient care			
1. K S K 2. Leslie Measu	ks: andpu Cron	r, "Hand book of Biomedical instrumen nwell, Fred J. Weibell, Erich A. Pfeif nts, PHI, 2nd Edition, 2004	tation", Tata M fer, Biomedic	AcGra al Inst	w Hill 2n trumentat	id e/d. ion and
Reference	es:	, , , , , , , , , , , , , , , , , , , ,				
1. Barba	ra Ch	riste, Introduction to Biomedical Inst	trumentation,	Camb	ridge Ur	niversity
Press,	2008.				C	•
2. J J Car	rr, "In	troduction to Biomedical Equipment Te	chnology", 4e	d, Pear	rson Edu	cation
3. John C	G Web	oster, "Medical Instrumentation application	ion and design	", 3ed	John Wi	ley
4. Richar	rd As	ton, "Principle of Biomedical Instrum	entation and	Measu	rement",	Merrill
Educa	tion/P	rentice Hall.				
Course P	lan					
Module		Course content				End
					Hours	Sem. Exam Marks
	Intro	duction to bio-medical instrumentation	n system, over	rview	1	
	of an	atomy and physiological systems of the	body.		1	
I	Sour prop	ces of bio-electric potential: Resting an agation of action potentials. Bio	nd action pote electric pote	ential, ntials	n	15%
	exan intro	ples (ECG, EEG, EMG, ERG, duction only.)	EOG, EGG,	etc	2	

	Electrode theory: Nernst relation Bio potential electrodes: Microelectrodes, skin surface electrodes, needle electrodes.	1	
	Instrumentation for clinical laboratory: Bio potential amplifiers- instrumentation amplifiers, carrier amplifiers, isolation amplifiers, chopper amplifiers	2	
	Heart and cardiovascular system (brief discussion), electro conduction system of the heart. Electrocardiography, ECG machine block diagram, ECG lead configurations, ECG recording system, Einthoven triangle, analysis of ECG signals.	3	
П	Measurement of blood pressure: Direct, indirect and relative methods of blood pressure measurement, auscultatory method, oscillometric and ultrasonic non-invasive pressure measurements.	2	15%
	Measurement of blood flow: Electromagnetic blood flow meters and ultrasonic blood flow meters	2	
	FIRST INTERNAL EXAM		
	The human nervous system. Neuron, action potential of brain,		
III	brain waves, types of electrodes, placement of electrodes,	2	
	Electromyography: Nerve conduction velocity, instrumentation		
	system for EMG.	1	150%
	Physiology of respiratory system (brief discussion), Respiratory parameters, spirometer, body plethysmographs, gas exchange and distribution.	2	13 /0
	Instruments for clinical laboratory: Oxymeters, pH meter, blood cell counter, flame photometer, spectrophotometer	3	
IV	Therapeutic Equipments: Principle, block schematic diagram, working and applications of: pacemakers, cardiac defibrillators, heart–lung machine, dialyzers, surgical diathermy equipment, ventilators	6	15%
	SECOND INTERNAL EXAM		
	Medical Imaging systems (Basic Principle only): X-ray imaging - Properties and production of X-rays, X-ray machine, applications of X-rays in medicine.	2	
V	Computed Tomograpy: Principle, image reconstruction, scanning system and applications.	2	20%
	Ultrasonic imaging systems: Basic pulse echo system, propagation of ultrasonic through tissues and reflections, display types, A-Scan, B-Scan, M-Scan, applications, real- time ultrasonic imaging systems and probes.	3	
VI	Magnetic Resonance Imaging – Basic NMR components, Biological effects and advantages of NMR imaging	3	20%

Biomedical Telemetry system: Components of biotelemetry			
system, application of telemetry in medicine, single channel	2		
telemetry system for ECG and temperature			
Patient Safety: Electric shock hazards, leakage current, safety	1		
codes for electro medical equipments	1		
END SEMESTER EXAM			

Question Paper Pattern (End semester exam)

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 100% for theory.

Course	Course Name	L-T-P - Credits	Ye	ar of duction
EE482	ENERGY MANAGEMENT AND AUDITING	3-0-0-3	20	016
	Prerequisite: NIL			
Course O	biectives			
• To	enable the students to understand the concept of energy m	nanagement		
• To	understand the different methods used to control peak der	nand		
• To	understand the energy management opportunities in diffe	rent systems		
• To	understand how the use of energy audit.			
• To	understand the different methods used for the economic a	nalysis of end	ergy proj	ects
_	TECLINICICCI	AI	<i>07</i> I - J	
Syllabus	TECHNOLOGI	SAL		
General p	inciples of Energy management and Energy management	planning - Pe	ak Dema	ind
controls -	Energy management opportunities in electrical systems an	d HVAC syst	tems – Re	eactive
power ma	nagement – Energy audit – cogeneration system – Econom	nic analysis of	f energy j	projects
Expecte	l outcome.			
The stude	its will be able to:			
i. l	Inderstand the different methods used to reduce energy co	nsumption		
	Lnow energy audit			
	Do economic analysis of energy projects			
Text Bo	DK/Reternces:	And the CDC	D	0.02
I. Al	bert Thumann, William J. Younger, Handbook of Energy	Audits, CRC	Press, 20	003
2. Cr	aries M. Gouschaik, Industrial energy conservation, John	wiley & Son	s, 1990.	2015
3. Cr	Nogi Coswami, Frank Kraith, Energy Management and C	conservation I	Ier, Zeu,	2013.
4. D. Pr	1 ogi Ooswann, 1 fank Krenn, Energy Management and C		Tanuooo	X, CKC
5 G	G Rajan Optimizing energy efficiencies in industry Tata	McGraw Hi	ll Pub C	` ∩
20	01		ii, i uo. c	,
6. IE	EE recommended practice for energy management in indu	strial and con	mercial	
fac	ilities, IEEE std 739 - 1995 (Bronze book).			
7. M	Jayaraju and Premlet, Introduction to Energy Conservation	on And Manag	gement, I	Phasor
Bo	oks, 2008.		, ,	
8. Pa	ul W O'Callaghan, Energy management, McGraw Hill Bo	ok Co., 1993		
9. W	ayne C.Turner, Energy management Hand Book, The Fai	<mark>rmou</mark> nt Press	, Inc., 19	97.
	Course Plan	/		
	2014			End
Module	Contents		Hours	Sem. Evam
				Marks
	General principles of Energy management and Energy n	nanagement		
_	planning.	_		
I	Peak Demand controls Methodologies Types of Industri	al Loads	6	
	Ontimal Load scheduling-Case studies	ui Louds,		15%
	Energy management opportunities in Lighting and	1 Motors		1.5 /0
п	Electrolytic Process and Electric heating Case studies		8	
	outer a constant and should housing, cube studies		Ŭ	15%
	FIRST INTERNAL EXAMINATION	N		10/0

	Types of boilers, Combustion in boilers, Performances evaluation,		15%	
	Feed water treatment, Blow down, Energy conservation			
	opportunities in boiler.			
	Properties of steam, Assessment of steam distribution losses, Steam	0		
111	leakages, Steam trapping, Condensate and flash steam recovery	8		
	system, Identifying opportunities for energy savings.			
	Classification, General fuel economy measures in furnaces, Excess			
	air, Heat Distribution, Temperature control, Draft control, Waste			
	neat recovery.		150/	
	HVAC system: Coefficient of performance, Capacity, Factors		13%	
	affecting Refrigeration and Air conditioning system performance	_		
IV	and savings opportunities.	7		
	Classification and Advantages of Waste Heat Recovery system,			
	analysis of waste heat recovery for Energy saving opportunities			
SECOND INTERNAL EXAMINATION				
	Energy audit -Definition, Need, Types of energy audit, Energy audit		20%	
	Instruments.			
V	Cogeneration-Types and Schemes, Optimal operation of	7		
	cogeneration plants- Case study.			
	Computer aided energy management.			
VI	Economic analysis methods-cash flow model, time value of money,		20%	
	evaluation of proposals, pay-back method, average rate of return	6		
	method, internal rate of return method, present value method, life	Ū		
	cycle costing approach, Case studies.			
END SEMESTER EXAM				

Maximum Marks: 100

Exam Duration: 3Hrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$ 2014

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course o	code	Course Name	L-T-P-C	Y	ear of
			2.0.0.2	Intro	oduction
EE48	54	Control Systems	3-0-0-3	2	2016
		Prerequisite : NIL			
Course (Objec	tives			
• T	'o give	the knowledge of Mathematical model of physical	l systems.		
• T	'o imp	art knowledge of different control equipment.			
• T	'o prov	vide knowhow of analysing systems with mathema	tical model.		
Syllabus	-	A DI A RIDI II VA	TAN		
Linear T	ime I	nvariant systems: Open loop-and closed loop cor	ntrol systems,	Transfer	function:
Mechanic	cal, El	ectromechanical systems. block diagram represent	ation, signal f	low grap	h. Control
system c	compo	nents. Time domain analysis of control system	is. PID contr	ollers, C	oncept of
stability,	Frequ	ency domain analysis, Introduction to Statespace.	N.		
Expecte	ed out	tcome.	Y		
The stude	ents w	ill have the	. A.		
	i.	Concept of modelling in transfer function and state	e space domain	n	
	<u>ii.</u>	Ability to analyse stability of linear time invariant	systems.		
Text Boo	oks:			- 1	
1. K	atsuhi	iko Ogata, "Modern Control Engineering", Fourth	edition, Pearso	on Educat	tion, New
	elhi, 2	2002.		Ŋ	D 11 '
2. N	lagara	th I.J. and Gopal M., "Control System Engineering	", Wiley Easte	ern, New	Delhi.
3. K	lichard	1 C. Dorf, Robert. H. Bisnop, "Modern Control Sys	stems", Pearso	n Educati	on, New
	eini –	Edition, 2007.		-	
Keieren	ciles:	n & Testten "Control System Commenceste" Ma Cu	II:11		
	GIDSO	n & Tutter, Control System Components, Mc Gra	aw mili. Eladia Navy I	Dallhi Gad	1 1001
	Norm	s.C., Automatic Control Systems, Frencice Hall o	ition Wilov E	Jellin, Oel	1.,1991.)07
5. 1	INOTING	Course Plan		astern, 20	
		Course I lan			Fnd
Module	1	Contents	11	Hours	Sem. Exam Marks
	Ope	n loop-and closed loop control systems: Transfer f	unction -T.F		
	of	simple linear time invariant systems -	Mechanical		
Ι	andF	Electromechanical systems – Force voltage and f	orce current	9	15%
	anal	ogy - block diagram representation - blockdiagram	n reduction -		
	sign	al flow graph - Mason's gain formula - characteristi	ics equation.		
тт	Con	trol system components: DC and AC servo motor	– synchro -	5	1504
11	mag	netic amplifier - gyroscope - stepper motor - Tacho	meter.	3	1370
		FIRST INTERNAL EXAMINATI	ON		
	Tim	e domain analysis of control systems: Transient	and steady		
	state	responses - test signals - time domain specification	ns - first and		
III	seco	nd order systems - impulse and step responses -	steady state	7	15%
	error	analysis - static error coefficient of type 0,1,	2 systems -		
	Dyn	amic error coefficients			
	PID	controllers, Concept of stability: stability of feedba	ack system -		
IV	Rou	th's stability criterion - Root locus -Genera	l rules for	7	15%
	cons	tructing Root loci - effect of addition of poles and	zeros.		
SECOND INTERNAL EXAMINATION					
V	Freq	uency domain analysis: Introduction - Bode plo	t-Polar plot-	6	20%

	gain margin - phase margin.		
VI	Introduction to state space: State concept, state equation of simple systems, physical and phase variables, Eigen value and eigenvectors, conversion of state space model to transfer function.	8	20%
END SEMESTER EXAM			

Exam Duration: 3Hrs.

```
Maximum Marks: 100
```

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	Course Name L-T-	Р-С	Ye	ear of
EE486	SOFT COMPUTING 3-0	0-3	2	016
	Prerequisite: NIL			
Course	Dbjectives			
	• To provide the concepts of soft computing techniques such as	neura	l netwo	rks,
	fuzzy systems, genetic algorithms			
	A DI A DIDITI IZATAA			
Syllabus Introduction To Soft Computing And Neural Networks, Fuzzy Sets And Fuzzy Logic: Fuzzy Sets, Neuro- Fuzzy Modelling, Machine Learning, Machine Learning Approach to Knowledge Acquisition				
Expect	ed outcome.	-		
The stuc	lents will be able to get ideas on :			
	i. Artificial Intelligence, Various types of production systems, charac	teristic	s of proc	luction
	ii Neural Networks, architecture, functions and various algorithms in	volved		
	iii. Fuzzy Logic, Various fuzzy systems and their functions.	vorveu.		
	iv. Genetic algorithms, its applications and advances			
T (D				
 James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 1991 Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2008 S.Y Kung , Digital Neural Network , Prentice-Hall of India, 1993 References: Amit Konar, "Artificial Intelligence and Soft Computing", First Edition, CRC Press, 2000. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson Edn., 2006 George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995 Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998 Simon Haykin "Neural Networks: A Comprehensive Foundation" Prentice Hall 				
	Course Plan			
Module	Contents		Hours	End Sem .Exam Marks
Ι	Introduction To Soft Computing And Neural Networks : Evolution Computing - Soft Computing Constituents – From Conventional A Computational Intelligence - Adaptive Networks – Feed forward Network – Supervised Learning	of to orks	7	15%
П	Neural Networks – Radial Basis Function Networks - Reinforcem Learning – Unsupervised Learning Neural Networks – Adap Resonance architectures. Fuzzy Sets And Fuzzy Logic: Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations - Fuzzy Rules and Fuzzy Reasoning FIRST INTERNAL EXAMINATION	ent ive	7	15%

III	Fuzzy Inference Systems – Fuzzy Logic – Fuzzy Expert Systems – Fuzzy Decision Making Neuro-Fuzzy Modeling : Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification and Regression Trees	7	15%	
IV	Data Clustering Algorithms – Rulebase Structure Identification Neuro-Fuzzy Control.	7	15%	
SECOND INTERNAL EXAMINATION				
V	Machine Learning : Machine Learning Techniques – Machine Learning Using Neural Nets – Genetic Algorithms (GA)	7	20%	
VI	Applications of GA in Machine Learning - Machine Learning Approach to Knowledge Acquisition. Support Vector Machines for Learning – Linear Learning Machines – Support Vector Classification – Support Vector Regression - Applications.	7	20%	

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.