COURSE				YEAR (DF	
CODE	COURSE NAME	L-T-P-C	INT	RODUC	CTION	
EC361	Digital System Design	3-0-0-3		2016		
Prerequisit	e: EC207 Logic Circuit Design					
Course obj	ectives:					
	udy synthesis and design of CSSN					
	udy synthesis and design of ASC					
	udy hazards and design hazard free circuit	ts				
	udy PLA folding udy architecture of one CPLDs and FPGA	family				
Syllabus:	uty are intecture of one CI LDs and IT OA	Tailiny				
•	nchronous networks, asynchronous sequer	ntial circuits.	Hazard	ls. Fault	s. PLA.	
CPLDs and		, -		~,	~,,	
Expected o	itcome:					
The student	will be able:					
	nalyze and design clocked synchronous seq					
	nalyze and design asynchronous sequential					
	pply their knowledge in diagnosing faults in the terpret architecture of CPLDs and FPGA	i digital circuit	s, pla			
Text Books	1					
	G Givone, Digital Principles & Design, Tata	a McGraw Hill	. 2003			
	Vakerly, Digital Design, Pearson Education		,			
3. John M	Yarbrough, Digital Logic Applications and	Design, Thom	son Lea	arning		
References						
	bramovici, Melvin A. Breuer and Arthur I	D. Friedman, D	Digital S	Systems	Testing	
	able Design, John Wiley & Sons Inc.	DUU				
	Iano, M.D.Ciletti, Digital Design, 5 th Editic swas, Logic Design Theory, PHI	on, PHI.				
	E. Haskell, Darrin M. Hanna , Introducti	on to Digital	Design	Using	Digilent	
	oards, LBE Books- LLC		Design	Using	Dignom	
6. Z. Koha	6. Z. Kohavi, Switching and Finite Automata Theory, 2 nd ed., 2001, TMH					
Course Pla	1					
Module	Course content				End	
				Hours	Sem.	
					Exam Marilar	
· · · · · · · · · · · · · · · · · · ·	nalysis of clocked Synchronous Sequential	Networks(CS	SNI)	2	Marks	
			914)			
	Idelling of CSSN – State assignment and I	eduction		1		
	Design of CSSN			2	15	
	erative circuits			1		
	SM Chart and its realization			2		
	nalysis of Asynchronous Sequential Circui	ts (ASC)		2		
	low table reduction- Races in ASC			1		
	tate assignment problem and the transition	table- Design o	of	2	15	
	S					
	besign of Vending Machine controller.			2		

FIRST INTERNAL EXAM				
III	Hazards – static and dynamic hazards – essential	1		
	Design of Hazard free circuits – Data synchronizers	1		
	Mixed operating mode asynchronous circuits	1	15	
	Practical issues- clock skew and jitter	1		
	Synchronous and asynchronous inputs – switch bouncing	2		
	Fault table method – path sensitization method – Boolean difference method	2	15	
IV	Kohavi algorithm	2		
	Automatic test pattern generation – Built in Self Test(BIST)	3		
SECOND INTERNAL EXAM				
	PLA Minimization - PLA folding	2		
V	Foldable compatibility Matrix- Practical PLA	2	20	
v	Fault model in PLA	1	20	
	Test generation and Testable PLA Design.	3		
VI	CPLDs and FPGAs - Xilinx XC 9500 CPLD family, functional block diagram– input output block architecture - switch matrix	3		
	FPGAs – Xilinx XC 4000 FPGA family – configurable logic block - input output block, Programmable interconnect	3	20	
END SEMESTER EXAM				

Question Paper Pattern (End semester exam)

Max. Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50 % for theory, derivation, proof and 50% for logical/numerical problems.

2014

COURSE CODE	COURSE NAME		YEAR OF INTRODUCTION				
		L-T-P-C					
EC360	Soft Computing	3-0-0 -3	2016				
Prerequisite: NIL							
Course objectiv							
	ze various components of soft computi	ng like fuzzy lo	ogic, neural networks				
and genetic	0						
0	overview of fuzzy Logic and to underst	and the concept	ts and terminologies of				
fuzzy system			1 1				
-	escription on artificial neural networks		ages and application.				
•	e fundamentals of Genetic Algorithm (G	JA).					
	nd the concepts of hybrid systems.						
Syllabus:	Landaura Nierral Nierraulas Auguli		-1				
-	l systems. Neural Networks - Applic	• •	-				
	and pattern Association. Fundamenta	is of Genetic	Algorithm, Al search				
algorithm and h	•						
Expected outco The students wi							
		and their relation	in huilding intelligent				
Machines.	l describe soft computing techniques	and their roles	in building interligent				
	v logic and reasoning to handle uncertai	nty and colve a	ngineering problems				
11.0	the feasibility of applying a soft con	•	0 01				
Problem.	the reasonity of apprying a soft con	iputing method	uology loi a particular				
	al networks to pattern classification and	regression pro	blems				
11.	tic algorithms to combinatorial optimiz	U 1					
Text Books:		intern processing					
	erg, "Genetic Algorithms: Search, C	ptimization an	d Machine Learning".				
	esley,N.Y, 1989.	I					
	. Fausett, (1993) "Fundamentals	of Neural N	etworks: Architecture,				
	and Applications", Prentice Hall.		,				
	Ross, "Fuzzy Logic with Engineering A	Applications" W	/iley India.				
References:			•				
1. Ibrahim A. I	M., Introduction to Applied Fuzzy Elec	tronics, PHI, 20	013.				
2. J. Yen and	R. Langari, Fuzzy Logic, Intelligence	ce, Control and	l Information, Pearson				
Education.							
3. K.H.Lee, Fin	rst Course on Fuzzy Theory and Applic	cations, Springe	er-Verlag.				
4. Lin C. T. an	d C.S. G. Lee, Neural Fuzzy Systems,	Prentice Hall, 1	.996.				
	an & G.A. Vijayalakshmi Pai, "Neura		zzy Logic and Genetic				
	Synthesis and Applications" Prentice H						
	andan and S.N. Deepa, Principles of	Soft Computin	ng, Wiley India, 2007.				
ISBN: 10: 8	1-265-1075-7.						

	Course Plan					
Module	Course content	Hours	End Sem. Exam Marks			
	Soft computing: Introduction, soft computing vs hard computing, Fuzzy Computing, Neural Computing, Genetic Algorithms. applications of soft computing	2				
Ι	Introduction to fuzzy sets and systems-crispness, vagueness, uncertainty and fuzziness. Basics of fuzzy sets, membership functions, support of a fuzzy set height, normalized fuzzy set, alpha cuts.	3	15			
	Type- 2 fuzzy sets. Operation on fuzzy set-complement, intersection, union, Demorgan's Law Equality & subset hood.	4				
II	Extension Principle and its application, Fuzzy relation- operations, projection, max-min, min-max composition, cylindrical extension.	3	15			
	FIRST INTERNAL EXAM					
	Reflexivity, symmetry and transitivity of fuzzy relations. Fuzzy prepositions, fuzzy connectives, linguistic variables, hedges.	4				
III	Approximate reasoning or fuzzy inference, Fuzzy rule based system. Fuzzification and defuzzification using centroid, centre of sums.	4	15			
IV	Introduction to Neural Networks - Applications –Biological neuron- Typical architecture of Artificial Neural Networks - Common activation function.	4	15			
	McCulloh Pitts Neuron – Architecture, logic implementatons. Supervised and Unsupervised learning	4				
	SECOND INTERNAL EXAM					
	Linear Separability, Pattern Classification: Perceptrons	2				
V	Back propagation network and its architecture, Back propagation learning, back propagation algorithm	4	20			
VI	Genetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.	5	20			
	Operators - Cross over, Mutation.	3				
END SEMESTER EXAM						

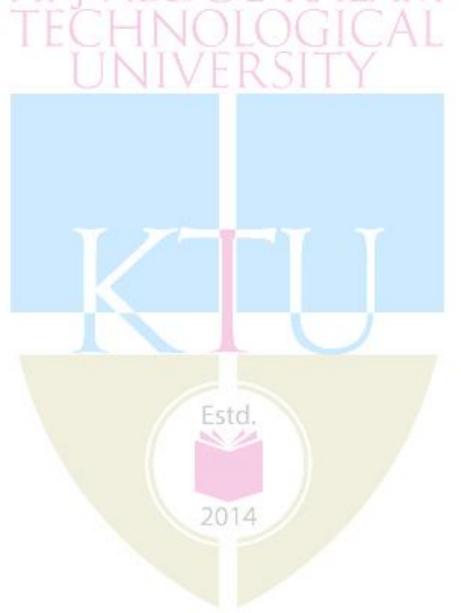
Question Paper (End semester exam)

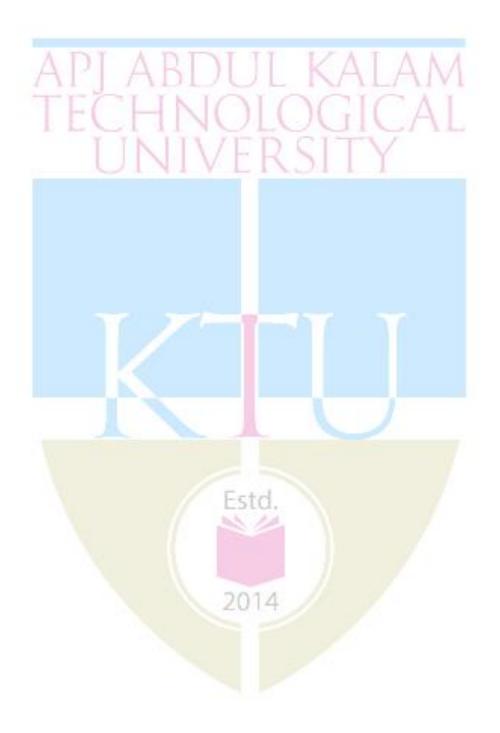
Max. Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50 % for theory, derivation, proof and 50% for logical/numerical problems.

	COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
	EC363	Optimization Techniques	3-0-0-3	2016
Pr	erequisite: N	· · · · · ·		
Co	ourse objectiv	/es:		
1.	To understa	nd the need and origin of the optimiza	ation methods.	
2.	-	road picture of the various applicat	tions of optimiz	ation methods used in
_	engineering.			
<u>3.</u>		ptimization problem and its various co		
-	-	neering applications of optimization		
		programming problems, objective f		
		oblems/techniques, necessary and su		
		xity, Mathematical formulation of L Feasible solutions, Graphical solutions		
		nplex algorithm, Duality in linear		
		etwork path models, Nonlinear uncor		-
		Genetic algorithm. Introduction to op		
	1 ,		1	
Ex	pected outco	me:		
	The students	s will (i) have a thorough understand	ing of optimization	on techniques
		(ii)l be able to formulate and solving	the engineering	optimization problems
Te	ext Books:			
1.		Operations Research", 5/e, Macmill	lan Publishing Co	$m_{nony} = 1007$
2.	Kalvnamov		•	1 07
4.		Deb. "Optimization for Engineerin	•	1 07
	Prentice-Hal	l of India Pvt. Ltd., New Delhi	ng Design-Algor	ithms and Examples"
	Prentice-Hall Singiresu	l of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization	ng Design-Algor	ithms and Examples"
3.	Prentice-Hal Singiresu S Internationa	l of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization	ng Design-Algor	ithms and Examples"
3. Re	Prentice-Hal Singiresu S Internationa	l of India Pvt. Ltd., New Delhi 5 Rao, "Engineering optimization 1, 2009	ng Design-Algor	ithms and Examples" Practice", New Age
3. Re	Prentice-Hal Singiresu S Internationa eferences: A. Ravindra	l of India Pvt. Ltd., New Delhi 5 Rao, "Engineering optimization 1, 2009 n, D. T. Phillips, J. J. Solberg, Operat	ng Design-Algor	ithms and Examples" Practice", New Age
3. Re 1.	Prentice-Hal Singiresu S Internationa ferences: A. Ravindra Practice, Job	l of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization I, 2009 n, D. T. Phillips, J. J. Solberg, Operat in Wiley and Sons.	ng Design-Algor n Theory and tions Research –	ithms and Examples" Practice", New Age Principles and
3. Re 1.	Prentice-Hal Singiresu S Internationa ferences: A. Ravindra Practice, Joh Ashok D Be	l of India Pvt. Ltd., New Delhi 5 Rao, "Engineering optimization 1, 2009 n, D. T. Phillips, J. J. Solberg, Operat an Wiley and Sons. legundu, Tirupathi R Chandrupatla, "	ng Design-Algor n Theory and tions Research –	ithms and Examples" Practice", New Age Principles and
3. Re 1. 2.	Prentice-Hal Singiresu S Internationa ferences: A. Ravindra Practice, Joh Ashok D Be in Engineeri	l of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization I, 2009 n, D. T. Phillips, J. J. Solberg, Operat on Wiley and Sons. legundu, Tirupathi R Chandrupatla, " ng", Pearson Education.	ng Design-Algor n Theory and tions Research – 'Optimization co	Tithms and Examples" Practice", New Age Principles and ncepts and Application
3. Re 1. 2. 3.	Prentice-Hal Singiresu S Internationa ferences: A. Ravindra Practice, Joh Ashok D Be in Engineeri Hadley, G. "	l of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization I, 2009 n, D. T. Phillips, J. J. Solberg, Operat on Wiley and Sons. legundu, Tirupathi R Chandrupatla, " ng", Pearson Education. 'Linear programming", Narosa Publis	ng Design- Algor n Theory and tions Research – 'Optimization con shing House, New	Tithms and Examples" Practice", New Age Principles and ncepts and Application v Delhi
3. Re 1. 2. 3.	Prentice-Hal Singiresu S Internationa ferences: A. Ravindra Practice, Joh Ashok D Be in Engineeri Hadley, G. " J. S. Arora,	l of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization I, 2009 n, D. T. Phillips, J. J. Solberg, Operat in Wiley and Sons. legundu, Tirupathi R Chandrupatla, " ng", Pearson Education. 'Linear programming", Narosa Publis Introduction to Optimum Design, Mc	ng Design-Algor n Theory and tions Research – 'Optimization co shing House, New Graw-Hill Book	Tithms and Examples" Practice", New Age Principles and ncepts and Application v Delhi Company.
3. Re 1.	Prentice-Hal Singiresu S Internationa ferences: A. Ravindra Practice, Joh Ashok D Be in Engineeri Hadley, G. " J. S. Arora,	l of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization I, 2009 n, D. T. Phillips, J. J. Solberg, Operat on Wiley and Sons. legundu, Tirupathi R Chandrupatla, " ng", Pearson Education. 'Linear programming", Narosa Publis	ng Design-Algor n Theory and tions Research – 'Optimization co shing House, New Graw-Hill Book	Tithms and Examples" Practice", New Age Principles and ncepts and Application v Delhi Company.
3. Re 1. 2. 3. 4.	Prentice-Hal Singiresu S Internationa ferences: A. Ravindra Practice, Joh Ashok D Be in Engineeri Hadley, G. " J. S. Arora,	I of India Pvt. Ltd., New Delhi S Rao, "Engineering optimization I, 2009 n, D. T. Phillips, J. J. Solberg, Operat on Wiley and Sons. legundu, Tirupathi R Chandrupatla, " ng", Pearson Education. 'Linear programming", Narosa Publis Introduction to Optimum Design, Mc	ng Design-Algor n Theory and tions Research – 'Optimization co shing House, New Graw-Hill Book	Tithms and Examples" Practice", New Age Principles and ncepts and Application v Delhi Company.


	Course Plan				
Module	Course content	Hours	End Sem. Exam Marks		
	Introduction: Engineering applications of optimization, Formulation of design problems as mathematical programming problems, objective function, constraints, classification of optimization problems/techniques.	2	15		
Ι	Optimization techniques: Classical optimization, unconstrained single and multivariable minimization- necessary and sufficient conditions for optimality, uni-modality, convexity.	5	15		
II	Linear programming problems-I: Mathematical formulation of LP Problems, slack, surplus and artificial variables. Reduction of a LPP to the standard form, feasible solutions. Graphical solution method, simplex algorithm and solution using tabular method, optimality conditions and degeneracy. Duality in linear programming	7	15		
	FIRST INTERNAL EXAM	-			
III	Transportation Problem: Formulation of transportation problem, Basic feasible solution using different methods- East West corner method, Vogel approximation method, Optimality methods, MODI method, Unbalanced transportation problem	7	15		
IV	Game Theory: Introduction, 2- person zero – sum game; Saddle point; Mini-Max and Maxi-Min Theorems (statement only); Graphical solution (2x n, m x 2 game), dominance property. Network path Models: Tree Networks – Minimal Spanning Tree - Prim's Algorithm. Shortest path problems- solution methods – Dijkstra's Method.	7	15		
SECOND INTERNAL EXAM					
V	Nonlinear unconstrained optimization: Single variable optimization methods- Fibonacci search method, Newton- Raphson method. Multi-variable methods- Hook-Jeeves pattern search method, Cauchy's (steepest descent) method.	7	20		
VI	Modern methods of optimization: Introduction to Genetic algorithm, Cross over, Mutation, Reproduction, Simple examples of applications in electronics engineering	5	20		
	Introduction to optimization tools and softwares. Solution of optimization Problems using MATLAB.	2	0		
	END SEMESTER EXAM				

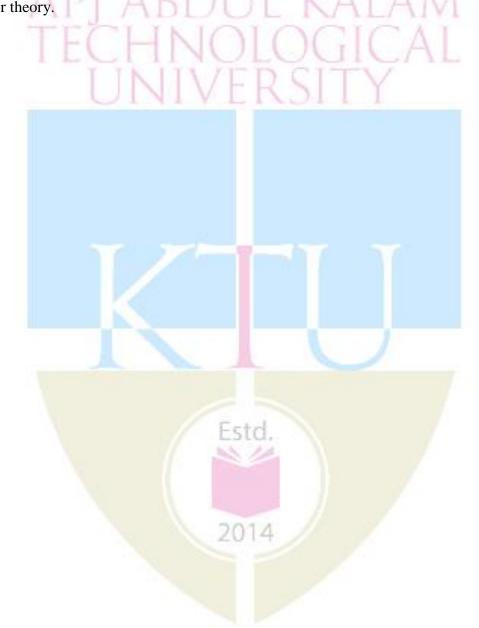

Question Paper Pattern (End sem. Exam.)

Max. Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 30 % for theory and 70% for logical/numerical problems, derivation and proof.

COURS					YEAR (
CODE		SE NAME	L-T-P-C	INT	RODUC	CTION
EC365		ll Engineering	3-0-0-3		2016	
Prerequisi						
Course ob						
	duce student to basic					
	derstand the anatomy & physiology of major systems of the body in designing					
	ent for medical treatme				- f 1 :	
	rt knowledge about th	e principle and worki	ng of different ty	ypes	of b 10-m	edical
Syllabus:	ic equipment/devices.					
	ly-overview, Physiol	orical systems of h	ody Measurem	ent d	of physi	ological
	Assisting and therape					
	, Patient safety, Medic		incontaiony equi	piner	115, 1010	metry m
Expected of						
-	s will be able:					
	rstand diagnosis and t	herapy related equipn	nents.			
	erstand the problem a			ent fo	or diagn	osis and
therapy						
	rstand the importance	6	0	field	•	
	rstand the importance	of telemetry in patient	t care			
Text Book				~		
	dpur, "Hand book of					
	Cromwell, Fred J. We		fer, Biomedical	Inst	rumental	tion and
References	ements, PHI, 2nd Edit	ion, 2004				
	Christe, Introduction	n to Biomedical Inc	trumentation (amh	idaa U	niversity
Press, 2		ii to bioineuteat fils	uumentation, C	amoi	luge Of	liversity
	r, "Introduction to Bio	medical Equipment T	echnology" Pe	arson	Educati	on 4 th
e/d.	,		••••••••••••••••••••••••••••••••••••••			
	Webster, "Medical Ins	strumentation applicat	ion and design",	Johr	Wiley 3	$3^{rd} e/d.$
	Aston, "Principle of					
Educati	on/Prentice Hall.					
Course Pla	n					
Module		Course content				End
					Hours	Sem.
					110015	Exam
						Marks
	ntroduction to bio-mo		•	iew	1	
	of anatomy and physio				-	
	Sources of bio-electric					
	propagation of acti				2	15
	examples (ECG, El	EG, ENIG, EKG,	EUG, EGG,	etc		15
	ntroduction only.)	at relation				
	Electrode theory: Nern Bio potential electr		lac clain and	face	1	
	electrodes, needle elec		les, skin surf	ace	1	
	neenoues, neene elec					


	Instrumentation for clinical laboratory: Bio potential amplifiers- instrumentation amplifiers, carrier amplifiers, isolation amplifiers, chopper amplifiers	2		
п	Heart and cardiovascular system (brief discussion), electro conduction system of the heart. Electrocardiography, ECG machine block diagram, ECG lead configurations, ECG recording system, Einthoven triangle, analysis of ECG signals.	3		
	Measurement of blood pressure: Direct, indirect and relative methods of blood pressure measurement, auscultatory method, oscillometric and ultrasonic non-invasive pressure measurements.	2	15	
	Measurement of blood flow: Electromagnetic blood flow meters and ultrasonic blood flow meters.	2		
	FIRST INTERNAL EXAM			
	The human nervous system. Neuron, action potential of brain, brain waves, types of electrodes, placement of electrodes, evoked potential, EEG recording, analysis of EEG.	2		
тт	Electromyography: Nerve conduction velocity, instrumentation system for EMG.	1	15	
III	Physiology of respiratory system (brief discussion), Respiratory parameters, spirometer, body plethysmographs, gas exchange and distribution.	2	15	
	Instruments for clinical laboratory: Oxymeters, pH meter, blood cell counter, flame photometer, spectrophotometer	3		
IV	Therapeutic Equipments: Principle, block schematic diagram, working and applications of : pacemakers, cardiac defibrillators, heart–lung machine, dialyzers, surgical diathermy equipment, ventilators	6	15	
	SECOND INTERNAL EXAM			
	Medical Imaging systems (Basic Principle only): X-ray imaging - Properties and production of X-rays, X-ray machine, applications of X-rays in medicine.	2		
V	Computed Tomograpy: Principle, image reconstruction, scanning system and applications.	2	20	
	Ultrasonic imaging systems: Basic pulse echo system, propagation of ultrasonic through tissues and reflections, display types, A-Scan, B-Scan, M-Scan, applications, real-time ultrasonic imaging systems and probes.	3		
VI	Magnetic Resonance Imaging – Basic NMR components, Biological effects and advantages of NMR imaging	3		
	Biomedical Telemetry system: Components of biotelemetry system, application of telemetry in medicine, single channel telemetry system for ECG and temperature	2	20	
	Patient Safety: Electric shock hazards, leakage current, safety codes for electro medical equipments	1		
	END SEMESTER EXAM			

Question Paper Pattern (End Sem. Exam)

Maximum Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 100 % for theory.

