Course c	ode Course Name L-T-P Credits		ar of duction
CS30 1	THEORY OF COMPUTATION 3-1-0-4	2	016
	Prerequisite: Nil		
 To an To Syllabus Introductiand autor decidabili Expected The Stude Classical autor data 	Prerequisite: Nil bjectives introduce the concept of formal languages. discuss the Chomsky classification of formal languages with discus d automata for regular, context-free, context sensitive and unrestricted discuss the notions of decidability and halting problem. on to Automata Theory, Structure of an automaton, classification of au nata for generating each class of formal languages in the Chorty and Halting problem. Outcome nts will be able to assify formal languages into regular, context-free, context sensitive sign finite state automata, regular grammar, regular expression and	language tomata, g msky Hi and unre	s. grammar erarchy, estricted
rel iii. De lan iv. De v. Un Text Boo 1. Jo T 2. Jo	ation representations for regular languages. esign push-down automata and context-free grammar representations iguages. esign Turing Machines for accepting recursively enumerable languages inderstand the notions of decidability and undecidability of problems, H	for cont alting pro ion to A on, TMH,	bblem. utomata
Reference	es		
1. D	exter C. Kozen, Automata and Computability, Springer1999.		
	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
I	Introduction to Automata Theory and its significance. Type 3 Formalism: Finite state automata – Properties of transition functions, Designing finite automata, NFA, Finite Automata with Epsilon Transitions, Equivalence of NFA and DFA, Conversion of NFA to DFA, Equivalence and Conversion of NFA with and without Epsilon Transitions.	10	15 %
II	Myhill-Nerode Theorem, Minimal State FA Computation. Finite State Machines with Output- Mealy and Moore machine (Design Only), Two- Way Finite Automata. Regular Grammar, Regular Expressions, Equivalence of regular expressions and NFA with epsilon transitions. Converting Regular Expressions to NFA with epsilon transitions Equivalence of DFA and regular expressions, converting DFA to Regular Expressions.	10	15 %

	FIRST INTERNAL EXAM		
	Pumping Lemma for Regular Languages, Applications of Pumping		
	Lemma. Closure Properties of Regular sets (Proofs not required),		
III	Decision Problems related with Type 3 Formalism		
	Type 2 Formalism:- Context-Free Languages (CFL), Context-Free		
	Grammar (CFG), Derivation trees, Ambiguity, Simplification of	09	15 %
	CFG, Chomsky Normal Form, Greibach normal forms		
	Non-Deterministic Pushdown Automata (NPDA), design.		
	Equivalence of acceptance by final state and empty stack in PDA.		
IV	Equivalence between NPDA and CFG, Deterministic Push Down		
	Automata, Closure properties of CFLs (Proof not required), Decision	08	15 %
	Problems related with Type 3 Formalism.		
	SECOND INTERNAL EXAM		
	Pumping Lemma for CFLs, Applications of Pumping Lemma.		
	Type 1 Formalism: Context-sensitive Grammar. Linear Bounded		
	Automata (Design not required)		
V	Type 0 Formalism: Turing Machine (TM) – Basics and formal		
	definition, TMs as language acceptors, TMs as Transducers,	09	20 %
	Designing Turing Machines.		_
	Variants of TMs -Universal Turing Machine, Multi- tape TMs, Non		
	Deterministic TMs, Enumeration Machine (Equivalence not		
VI	required), Recursively Enumerable Languages, Recursive languages,		
	Properties of Recursively Enumerable Languages and Recursive	00	20.0/
	Languages, Decidability and Halting Problem. Chomsky Hierarchy END SEMESTER EXAM	08	20 %

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12 b. *Four* questions each having <u>3</u> marks, uniformly covering modules I and II; All*four* questions have to be answered.
- 3. Part B
 - a. Total marks : 18 b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.

4. Part C

- a. Total marks : 12 b. *Four* questions each having <u>3</u> marks, uniformly covering modules III and IV; All*four* questions have to be answered.
- 5. Part D
 - a. Total marks : 18 b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered. A question can have a maximum of three sub-parts.

There should be at least 60% analytical/numerical questions.

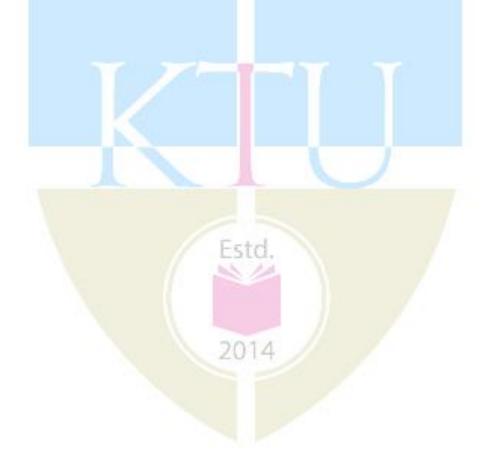
Cour cod		Course Name	L-T-P Credits		r of luction
CS3	03	SYSTEM SOFTWARE	2-1-0-3	20	16
		Prerequisite: Nil			
Course	Objectiv	ves			
	А	o make students understand the design concepts of vasembler, Linker, Loader and Macro pre-processor, ext Editor and Debugger.	•		
Functio	nt types ns of Ass and Loa or and	of System Software, SIC & SIC/XE Architecture sembler, Assembler Design, Single pass and 2 Pass As ders, Absolute Loader and Relocating loader, Design its design, Fundamentals of Text Editor Design,	semblers ar	nd their I Loader,	Design, Macro
Expect	ed Outco	me			
i. ii. iii. iv.	distinguis design, a design, a design, a critique t	Il be able to sh different software into different categories nalyze and implement one pass, two pass or multi pass nalyze and implement loader and linker. nalyze and implement macro processors. he features of modern editing /debugging tools.	assembler.		
		L. Beck, System Software: An Introduction to System Education Asia, 1997.	stems Prog	grammin	g, 3/E,
Referen					
2. 3. 4. 5. 6. 7. 8.	Edition, http://gcc J Nithyas John J. D Jonathan Edition, (M. Beck Addison Peter Ab of India. Writing	namdhere, Systems Programming and Operating System Coraw Hill. <u>s.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html</u> - The C Pr hri, System Software, Second Edition, Tata McGraw I onovan, Systems Programming, Tata McGraw Hill Ed Corbet, Alessandro Rubini, Greg Kroah-Hartman, Lin D.Reilly Books , H. Bohme, M. Dziadzka, et al., Linux Kernel In Wesley Publications, el, IBM PC Assembly Language and Programming, The UNIX device drivers - George Pajari – Addison Wes <u>s.ulb.tu-darmstadt.de/197262074.pdf</u>). <u>Course Plan</u>	eprocessor Hill. ition 1991. nux Device nternals, S hird Editior	Second I	, Third Edition, ce Hall
Module	e	Contents		Hours	End
					Sem Exam. Marks

VI	<i>Text Editors:</i> Overview of Editing, User Interface, Editor Structure.	2	
			20 %
	<i>Device drivers:</i> Anatomy of a device driver, Character and block device drivers, General design of device drivers	2	
V	Macro Preprocessor:-Macro Instruction Definition and Expansion. One pass Macroprocessor Algorithm and data structures, Machine Independent MacroProcessor Features, Macro processor design options	7	20 %
	SECOND INTERNAL EXAM		- -
IV	<i>Linker and Loader</i> Basic Loader functions - Design of absolute loader, Simple bootstrap Loader, Machine dependent loader features- Relocation, Program Linking, Algorithm and data structures of two pass Linking Loader, Machine dependent loader features, Loader Design Options.	7	15 %
ш	Assembler design options: Machine Independent assembler features – program blocks, Control sections, Assembler design options- Algorithm for Single Pass assembler, Multi pass assembler, Implementation example of MASM Assembler	7	15 %
	FIRST INTERNAL EXAM		
	assembler algorithm, Hand assembly of SIC/XE program, Machine dependent assembler features.		
II	Assemblers Basic Functions of Assembler. Assembler output format – Header, Text and End Records- Assembler data structures, Two pass	6	15 %
I	Debugger, Device Driver, Compiler, Interpreter, Operating System(Basic Concepts only) SIC & SIC/XE Architecture, Addressing modes, SIC & SIC/XE Instruction set, Assembler Directives and Programming.	6	15%
	<i>Introduction :</i> System Software Vs. Application Software, Different System Software– Assembler, Linker, Loader, Macro Processor, Text Editor,	2	

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questionseach having <u>9</u> marks, uniformly covering modules I and II; \underline{Two} questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course		L-T-P -	Y	ear of
code	Course Name	Credits	Intro	duction
CS305	Microprocessors and Microcontrollers	2-1-0-3	2	2016
Prerequis	ite: CS202 Computer Organisation and Architecture			
Course O	0			
	impart basic understanding of the internal organisation of 80	086 Micro	oproce	ssor and
	51 microcontroller.			
	introduce the concepts of interfacing microprocessors with exter	rnal devic	es.	
	develop Assembly language programming skills.			
Syllabus	up to 2026 Missonno accord Anghitastum and signals. Instructi	ion ant of	0000	Timina
	on to 8086 Microprocessor; Architecture and signals, Instructi			0
	Assembly Language Programming, Memory and I/O interfacing 7, Interrupts and Interrupt handling, Microcontrollers - 8051 Au			
	istruction Set and Simple Programming Concepts.	Cintecture		is salielli
Expected				
-	nts will be able to			
	scribe different modes of operations of a typical microprocessor	and micro	ocontro	oller.
	sign and develop 8086 assembly language programs using			
	ious assembler directives.			~F ~~
	erface microprocessors with various external devices.			
	alyze and compare the features of microprocessors and microcon	ntrollers.		
	sign and develop assembly language programs using 8051 micro		r.	
Text Book	is a second s			
Hi	nurchandi and Ray, <i>Advanced Microprocessors and Peripherals</i> 11, 2012			
	j Kamal, Microcontrollers: Architecture, Programming, Interfa	cing and	System	n Design,
	arson Education, 2011.			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Ed	buglas V. Hall, SSSP Rao, <i>Microprocessors and Interfacing</i> , Th lucation, 2012.	ird Editio	n, Mc	GrawHill
Reference				_
	rry B. Brey, The Intel Microprocessors – Architecture, F	Programm	ing a	nd
	terfacing, Eigth Edition, Pearson Education, 2015	F 11.1	-	
	NagoorKani, Microprocessors and Microcontrollers, Second	Edition,	Tata	
M	cGraw Hill, 2012.			
	Course Plan			
				End
Module	Contents	H	ours	Sem. Exam Marks
	Evolution of microprocessors, 8086 Microprocessor - Archited	cture		
Ι	and signals, Memory organisation, Minimum and maximum r of operation, Minimum mode Timing Diagram. Compariso 8086 and 8088.	node	07	15%
	8086 Addressing Modes, 8086 Instruction set and Assen	nbler		
II	Directives - Assembly Language Programming with Subrout Macros, Passing Parameters, Use of stack.		08	15%

	FIRST INTERNAL EXAM		
III	Interrupts - Types of Interrupts and Interrupt Service Routine. Handling Interrupts in 8086, Interrupt programming. Basic Peripherals and their Interfacing with 8086 - Programmable Interrupt Controller - 8259 - Architecture.	07	15%
IV	Interfacing Memory, I/O, 8255 - Detailed study - Architecture, Control word format and modes of operation, Architecture and modes of operation of 8279 and 8257 (Just mention the control word, no need to memorize the control word format)	07	15%
	SECOND INTERNAL EXAM		
V	Microcontrollers - Types of Microcontrollers - Criteria for selecting a microcontroller - Example Applications. Characteristics and Resources of a microcontroller. Organization and design of these resources in a typical microcontroller - 8051. 8051 Architecture, Register Organization, Memory and I/O addressing, Interrupts and Stack.	08	20%
VI	8051 Addressing Modes, Different types of instructions and Instruction Set, Simple programs. Peripheral Chips for timing control - 8254/8253.	08	20%
	END SEMESTER EXAM		


- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV;All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
- 2014
- b. <u>*Three*</u>questionseach having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Cours code	e Course Name	L-T-P- Credits		ear of oduction
CS30	DATA COMMUNICATION	3-0-0-3	2	016
	Prerequisite: Nil			
Course	 Objectives To introduce fundamental communication models. To discuss various time domain and frequency or communication. To introduce the concepts of encoding, multiplexing and spectrum. 	N T	-	of data
propag	s cansmission, Transmission Impairments, Channel Capacity, Tra tion, Signal encoding Techniques, Multiplexing, Digital data og theorem, Error detection and correction, Spread spectrum, Basic	a transmissi	on tecl	nniques,
	ed Outcome dents will be able to Identify and list the various issues present in the design of a data co Apply the time domain and frequency domain concepts of signals Compare and select transmission media based on transmission capacity. Select and use appropriate signal encoding techniques and multiple scenario. Design suitable error detection and error correction algorithms communication and explain different switching techniques.	in data comn 1 impairmen exing technio	nunication the stand sta	on. channel r a given
2. 3.	ooks Curt M. White, Fundamentals of Networking and Communication [Chapter 3,4,9,10] Forouzan B. A., Data Communications and Networking, 5/e, [Chapters:3,4, 5, 6,7,8] Schiller J., Mobile Communications, 2/e, Pearson Education, 2009 William Stallings, Data and Computer Communication 9/e, Pearso [Chapters: 4, 5, 6, 7, 8, 9].	Tata McGr	raw Hi 2,3]	C
Refere 1. 2.	aces Forouzan B. A., Data Communications and Networking, 4/e, Tata Tanenbaum A. S. and D. Wetherall, Computer Networks, Pearson			
	COURSE PLAN			
Modu	e Contents	I	Iours	End Sem. Exam Marks

I	Data Transmission: Communication model Simplex, half duplex and full duplex transmission - Periodic Analog signals: Sine wave, phase, wavelength, time and frequency domain, bandwidth - Digital Signals; Digital data Transmission:- Analog & Digital data, Analog & Digital signals, Analog &Digital transmission – Transmission Impairments: Attenuation, Delay distortion, Noise - Channel capacity: Nyquist Bandwidth, Shannon's Capacity formula.	08	15%
II	Transmission media - Guided Transmission Media: Twisted pair, Coaxial cable, optical fiber, Wireless Transmission, Terrestrial microwave, Satellite microwave. Wireless Propagation: Ground wave propagation, Sky Wave propagation, LoS Propagation.	07	15%
	FIRST INTERNAL EXAM		
ш	Signal Encoding techniques - Digital Data Digital Signals: NRZ, Multilevel binary, Biphase - Digital Data Analog Signals : ASK, FSK, PSK - Analog Data Digital Signals: Sampling theorem, PCM, Delta Modulation - Analog Data Analog Signals: AM, FM, PM.	07	15%
IV	Multiplexing- Space Division Multiplexing-Frequency Division Multiplexing: Wave length Division Multiplexing - Time Division multiplexing: Characteristics, Digital Carrier system, SONET/SDH- Statistical time division multiplexing: Cable Modem - Code Division Multiplexing. Multiple Access- CDMA.	07	15%
	SECOND INTERNAL EXAM		
v	Digital Data Communication Techniques - Asynchronous transmission, Synchronous transmission-Detecting and Correcting Errors-Types of Errors-Error Detection: Parity check, Cyclic Redundancy Check (CRC) - Error Control Error Correction: Forward Error Correction and Hamming Distance.	06	20%
VI	Spread Spectrum Techniques-Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS). Basic principles of switching - Circuit Switched Networks, Structure of Circuit Switch - Packet Switching: Datagram Networks, Virtual Circuit Networks, Structure of packet switches.	07	20%
	END SEMESTER EXAM		•

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having $\underline{3}$ marks, uniformly covering modules I and II;All<u>four</u> questions have to be answered.
- 3. Part B

- a. Total marks : 18
- b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; $T\underline{wo}$ questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV;All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u>questionseach having <u>9</u> marks, uniformly covering modules III and IV;<u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course Objectives To intro- character Syllabus Introductory concepts of connectivity and edge Graphs theoretic algorith Expected Outcome The Students will be ab i. Demonstrate the properties and colspan="2">Concepts of connectivity and edge The Students will be ab i. Demonstrate the properties and colspan="2">Concepts of connectivity and edge The Students will be ab i. Demonstrate the properties and colspan="2">Colspan="2"Cols	le to e knowledge of fundamental concepts in haracterization of graphs and trees. olving real life problems. ween planar and non-planar graphs and solve p ent algorithms for graph related problems science.	algorithms anar Graphs, ix representati n graph theo problems. in different l India Ltd., 20	Trees, Vion of g	es and Vertex graphs,
 To introce character Syllabus Introductory concepts of connectivity and edge Graphs theoretic algorit Expected Outcome The Students will be ab i. Demonstrate the properties and constraine the properties and constraine the properties and constraine the properties and constrained to the properties and constrained the properties and constrated the properties and constraine the properties and constrai	duce the fundamental concepts in graph theorization of graphs/ trees and Graphs theoretic a of graphs, Euler and Hamiltonian graphs, Placonnectivity, Cut set and Cut vertices, Matrihms. le to e knowledge of fundamental concepts in naracterization of graphs and trees. olving real life problems. veen planar and non-planar graphs and solve point algorithms for graph related problems science.	algorithms anar Graphs, ix representati n graph theo problems. in different l India Ltd., 20	Trees, Vion of g	Vertex graphs,
 To intro- character Syllabus Introductory concepts of connectivity and edge Graphs theoretic algorit Expected Outcome The Students will be ab Demonstrate the properties and c Use graphs for s Distinguish betwity Develop efficies engineering and Text Books Douglas B. Wer Narasingh Deo, Robin J. Wilson References R. Diestel, Graph Module Introductor finite and ir pendent ver sub graphs, graphs. II eller graph 	duce the fundamental concepts in graph theorization of graphs/ trees and Graphs theoretic a of graphs, Euler and Hamiltonian graphs, Placonnectivity, Cut set and Cut vertices, Matrihms. le to e knowledge of fundamental concepts in naracterization of graphs and trees. olving real life problems. veen planar and non-planar graphs and solve point algorithms for graph related problems science.	algorithms anar Graphs, ix representati n graph theo problems. in different l India Ltd., 20	Trees, Vion of g	Vertex graphs,
character Syllabus Introductory concepts of concepts in a dege Graphs theoretic algorith Concepts is concepts in a dege Graphs theoretic algorith Expected Outcome The Students will be ab i. Demonstrate the properties and concepts is and concepts in a dege graphs for serii. Distinguish betweet in a dege graphs. I. Douglas B. Weet 2. Narasingh Deeo, 3. Robin J. Wilson References 1. R. Diestel, Graph Module Introductor finite and in pendent ver sub graphs, graphs. II Euler graph Hamiltonici types of dig	ization of graphs/ trees and Graphs theoretic a of graphs, Euler and Hamiltonian graphs, Pla connectivity, Cut set and Cut vertices, Matri hms. le to e knowledge of fundamental concepts in haracterization of graphs and trees. olving real life problems. veen planar and non-planar graphs and solve p ent algorithms for graph related problems science.	algorithms anar Graphs, ix representati n graph theo problems. in different l India Ltd., 20	Trees, Vion of g	Vertex graphs,
Introductory concepts of connectivity and edge Graphs theoretic algorit Expected Outcome The Students will be ab i. Demonstrate the properties and c ii. Use graphs for s iii. Distinguish betw iv. Develop efficie engineering and Text Books 1. Douglas B. We 2. Narasingh Deo, 3. Robin J. Wilson References 1. R. Diestel, Grap I. R. Diestel, Grap Module II Introductor finite and ir pendent ver sub graphs, graphs. Euler graph Hamiltonici types of dig	connectivity, Cut set and Cut vertices, Matri hms. le to e knowledge of fundamental concepts in haracterization of graphs and trees. olving real life problems. veen planar and non-planar graphs and solve p int algorithms for graph related problems science.	n graph theo problems. in different	ion of g ory, inc t domai	graphs,
The Students will be ab i. Demonstrate the properties and c ii. Use graphs for s iii. Distinguish betw iv. Develop efficite engineering and Text Books 1. Douglas B. We 2. Narasingh Deo, 3. Robin J. Wilson References 1. R. Diestel, <i>Grap</i> Module Introductor finite and ir pendent ver sub graphs. Euler graph Hamiltonici types of dig	e knowledge of fundamental concepts in naracterization of graphs and trees. olving real life problems. veen planar and non-planar graphs and solve p int algorithms for graph related problems science.	oroblems. in different	t domai	C
 i. Demonstrate the properties and componenties anditended and componenties and componenties and componenties and	e knowledge of fundamental concepts in naracterization of graphs and trees. olving real life problems. veen planar and non-planar graphs and solve p int algorithms for graph related problems science.	oroblems. in different	t domai	C
properties and cii.Use graphs for siii.Distinguish betwiv.Develop efficie engineering andText Books1.Douglas B. Wer2.Narasingh Deo, 3.3.Robin J. WilsonReferences 1.1.R. Diestel, GrapModuleIntroductor finite and ir pendent ver sub graphs, graphs.IIEuler graph Hamiltonici types of dig	haracterization of graphs and trees. olving real life problems. veen planar and non-planar graphs and solve p int algorithms for graph related problems science. st, Introduction to Graph Theory, Prentice Hall	oroblems. in different	t domai	C
 ii. Use graphs for s iii. Distinguish betw iv. Develop efficie engineering and Text Books 1. Douglas B. We 2. Narasingh Deo, 3. Robin J. Wilson References R. Diestel, Grap Module Introductor finite and ir pendent ver sub graphs, graphs. II 	olving real life problems. Ween planar and non-planar graphs and solve p ont algorithms for graph related problems science.	in different	001	ins of
iii. Distinguish betw iv. Develop efficie engineering and Text Books 1. Douglas B. Wet 2. Narasingh Deo, 3. Robin J. Wilson References 1. R. Diestel, <i>Grap</i> Module Introducto finite and ir pendent ver sub graphs, graphs. Euler graph Hamiltonici types of dig	ween planar and non-planar graphs and solve p ont algorithms for graph related problems science. st, Introduction to Graph Theory, Prentice Hall	in different	001	ins of
iv. Develop efficie engineering and Text Books 1. Douglas B. Wez 2. Narasingh Deo, 3. Robin J. Wilson References 1. R. Diestel, Grap Module I. R. Diestel, Grap I. R. Diestel, Grap	nt algorithms for graph related problems science. st, Introduction to Graph Theory, Prentice Hall	in different	001	ins of
engineering and Text Books 1. Douglas B. We 2. Narasingh Deo, 3. Robin J. Wilson References 1. R. Diestel, Grap Module Introductor finite and ir pendent ver sub graphs, graphs. Euler graph Hamiltonici types of dig	science.	l India Ltd., 20	001	
 Douglas B. Wei Narasingh Deo, Robin J. Wilson References R. Diestel, Grap Module Introductor finite and ir pendent ver sub graphs, graphs. II euler graph Hamiltonici types of dig 				
 Narasingh Deo, Robin J. Wilson References R. Diestel, Grap Module Introductor finite and ir pendent versub graphs, graphs. Euler graph Hamiltonici types of dig 				
References 1. R. Diestel, Grap Module Introductor finite and ir pendent ver sub graphs, graphs. II Hamiltonici types of dig	Graph theory, PHI, 1979. I, Introduction to Graph Theory, Longman Gro	Jup Liu., 2010)	
Introductor finite and ir pendent ver sub graphs, graphs. Euler graph Hamiltonici II types of dig	<i>h Theory</i> , free online edition, 2016: diestel-gra	aph-theory.com	m/basic.	.html.
I Introductor finite and ir pendent ver sub graphs, graphs. Euler graph Hamiltonici types of dig	Cou <mark>r</mark> se Plan			
Introductor finite and ir pendent ver sub graphs, graphs. Euler graph Hamiltonici II types of dig				End
Ifinite and ir pendent ver sub graphs, graphs.Euler graph HamiltoniciIItypes of dig	Contents	Н	lours	Sem. Exam Marks
I finite and in pendent ver sub graphs, graphs. Euler graph Hamiltonici II types of dig	y concepts - What is graph – Application of	f graphs –		VIAI K 5
Euler graph Hamiltonici II types of dig	finite graphs – Incidence and Degree – Isolat tex and Null graph. Paths and circuits – Ison walks, paths and circuits, Connected graphs, o	ted vertex, morphism,	09	15 %
Trees – pro	s, Hamiltonian paths and circuits, Dirac's th ty, Travelling salesman problem. Directed raphs, Digraphs and binary relation		10	15 %
Trees – pro	FIRST INTERNAL EXAM	I		/ •
		s - Rooted		
_	perties, pendent vertex, Distance and centres		07	15 %
FundamentaIVplanargrap	perties, pendent vertex, Distance and centres ree, counting trees, spanning trees.	ntation of		
dual.		nbinatorial	09	15 %

V	Matrix representation of graphs- Adjacency matrix, Incidence Matrix, Circuit matrix, Fundamental Circuit matrix and Rank, Cut		
v	set matrix, Path matrix	08	20 %
	Graphs theoretic algorithms - Algorithm for computer		
VI	representation of a graph, algorithm for connectedness and	07	20 %
*1	components, spanning tree, shortest path.		
	END SEMESTER EXAM		

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having $\underline{3}$ marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; \underline{Two} questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.

2014

- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course code	Course Name	L-T-P Credits		ear of duction
CS361	SOFT COMPUTING	3-0-0-3	2	2016
	Prerequisite: Nil			
Syllabus Introduct Genetic A	 Dbjectives To introduce the concepts in Soft Computing such as A Fuzzy logic-based systems, genetic algorithm-based system to Soft Computing, Artificial Neural Networks, Fuzzy Algorithms, hybrid systems. I Outcome 	stems and t	heir hyt	orids.
1. Le 2. A 3. D 4. U 5. Id a	ents will be able to earn soft computing techniques and their applications. nalyze various neural network architectures. efine the fuzzy systems. nderstand the genetic algorithm concepts and their application entify and select a suitable Soft Computing technology to so solution and implement a Soft Computing solution.		oblem; c	construct
20	ks N. Sivanandam and S. N.Deepa, Principles of soft comput 007. imothy J. Ross, Fuzzy Logic with engineering applications, J	-		
A 2. Si In 3. R M 4. D N 5. B 19 6. G	 K. Sinha and M. M. Gupta, Soft Computing & Intell pplications-Academic Press /Elsevier. 2009. mon Haykin, Neural Network- A Comprehensive Fotternational, Inc. 1998 Eberhart and Y. Shi, Computational Intelligence: Corforgan Kaufman/Elsevier, 2007. riankov D., Hellendoorn H. and Reinfrank M., An Introdarosa Pub., 2001. art Kosko, Neural Network and Fuzzy Systems- Prentice Habitation Distribution (Section 1992) oldberg D.E., Genetic Algorithms in Search, Optimization (Markov 1989). 	oundation- ncepts to 2 luction to all, Inc., Er	Prenti Implem Fuzzy nglewoo	ce Hall entation, Control- d Cliffs,
	Course Plan			
Module	Contents		Hours	End Sem. Exam Marks
Ι	Introduction to Soft Computing Artificial neural networks - biological neurons, Basic me artificial neural networks - Connections, Learning, Ac Functions, McCulloch and Pitts Neuron, Hebb network.		07	15%
II	Perceptron networks – Learning rule – Training and algorithm, Adaptive Linear Neuron, Back propagation Ne Architecture, Training algorithm	-	07	15%
	Architecture, Training algorithm FIRST INTERNAL EXAM			

IV	Fuzzy membership functions, fuzzification, Methods of membership value assignments – intuition – inference – rank ordering, Lambda – cuts for fuzzy sets, Defuzzification methods	07	15%
	SECOND INTERNAL EXAM		
V	Truth values and Tables in Fuzzy Logic, Fuzzy propositions, Formation of fuzzy rules - Decomposition of rules – Aggregation of rules, Fuzzy Inference Systems - Mamdani and Sugeno types, Neuro-fuzzy hybrid systems – characteristics - classification	07	20%
VI	Introduction to genetic algorithm, operators in genetic algorithm - coding - selection - cross over – mutation, Stopping condition for genetic algorithm flow, Genetic-neuro hybrid systems, Genetic- Fuzzy rule based system	07	20%

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three sub-parts
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV;All<u>four</u> questions have to be answered.

Estd.

- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
- 2014
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.

Signals and systems -basic operations on signals - continuous time and discrete time signals Continuous time and discrete time systems -properties of systems - Z-transform - region convergence - properties of Z-transform - fourier transform (FT) cliscrete time signals - properties of FT - relation between Z-transform and FT. Discrete Fourier transform (DFT) - Properties of DFT - inverse DFT - Fast Fourier transform (FFT) - Radix-FFT algorithms - butterfly structure. Digital filter structures -structures for IIR - Structures for FR. Expected Outcome The Students will be able to Image: signals using Z Transform and FT. ii. Identify different types of continuous time and discrete time signals. Image: signals using Z Transform and FT. iv. Appreciate IIR digital filter structures. Fex <i>i</i> . Appreciate IIR digital filter structures. Image: signals using Z Transform and FT. <i>i</i> . Appreciate IIR digital filter structures. Image: signals using Z Transform and FT. <i>i</i> . Appreciate IIR digital filter structures. Image: signals using Z Transform and FT. <i>i</i> . Appreciate IIR digital filter structures. Image: signal Z and Z an	Course code	Course Name	L-T-P Credits		ear of oduction
Course Objectives • To introduce fundamental concepts of continuous time and discrete time signals. • To introduce frequency domain representation and analysis of signals. Syllabus Signals and systems –basic operations on signals – continuous time and discrete time signals. Continuous time and discrete time systems –properties of systems - Z-transform – region of convergence – properties of ET – relation between Z-transform and FT. Discrete Fourier transform (FT) - Radix-EFT algorithms – butterfly structure. Digital filter structures –structures for IIR - Structures for IIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. iv. Appreciate IIR digital filter structures. Pert Books 1. M.N. Bandyopadhyaya , Introduction to Signals and Systems and Digital Signal Processing, PHI, 2005. 2. S.D. Apte, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing, PH, 2005. 3. D. Ganesh Rao and V. P. Gejii, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 9. D. Ganesh Rao and V. P. Gejii, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd.	CS363	Signals and Systems	3-0-0-3	2	2016
Course Objectives • To introduce fundamental concepts of continuous time and discrete time signals. • To introduce frequency domain representation and analysis of signals. Syllabus Signals and systems –basic operations on signals – continuous time and discrete time signals. Continuous time and discrete time systems –properties of systems - Z-transform – region of convergence – properties of ET – relation between Z-transform and FT. Discrete Fourier transform (FT) - Radix-EFT algorithms – butterfly structure. Digital filter structures –structures for IIR - Structures for IIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. iv. Appreciate IIR digital filter structures. Pert Books 1. M.N. Bandyopadhyaya , Introduction to Signals and Systems and Digital Signal Processing, PHI, 2005. 2. S.D. Apte, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing, PH, 2005. 3. D. Ganesh Rao and V. P. Gejii, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 9. D. Ganesh Rao and V. P. Gejii, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd.	Pre-requi	site: NIL			
 To introduce fundamental concepts of continuous time and discrete time signals. To introduce fundamental concepts of continuous time and discrete time systems. To introduce frequency domain representation and analysis of signals. Syllabus Signals and systems -basic operations on signals – continuous time and discrete time signals convergence – properties of Z-transform – inverse Z-transform. Fourier transform (FFT) - Radix-FFT algorithms – butterfly structure. Digital filter structures – structures for IIR - Structures for FIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time signals. iii. Analyse signals using DFT and FFT. v. Appreciate IIR digital filter structures. Fext Books M.N. Bandyopadhyaya , Introduction to Signals and Systems and Digital Signal Processing, PHI, 2005. S.D. Apte, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing Series), 3e, Pearson, 2009. D. Ganesh Rao					
 To introduce fundamental concepts of continuous time and discrete time systems. To introduce frequency domain representation and analysis of signals. Syllabus Signals and systems -basic operations on signals - continuous time and discrete time signals continuous time and discrete time systems properties of systems - Z-transform region convergence - properties of Z-transform - inverse Z-transform and FT. Discrete Fourie transform (DFT) - Properties of DFT - relation between Z-transform and FT. Discrete Fourie transform (DFT) - Properties of DFT - inverse DFT - Fast Fourier transform (FFT) - Radix-FFT algorithms - butterfly structure. Digital filter structures -structures for IIR - Structures for IIR - Structures for IIR - Malyse signals using Z Transform and FT. ii. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time signals. iii. Analyse signals using DFT and FFT. Appreciate IIR digital filter structures. v. Appreciate FIR digital filter structures. v. Appreciate FIR digital filter structures. v. Appreciate FIR digital Signal Processing , Wiley India, 2012. References 1. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. D. Ganesh Rao and V. P. Gejji, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 4. J. K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan, 1989 5. Li Tan , Digital Signal Processing, Fundamentals and Applications, Elsevier, 2013. 6. M. H. Hayes, Digital Signal Processing, Seitech Publications, 2012. 8. S.K. Mitra, Digital Signal Processing, McGraw Hill Education, 2013. 9. S.W. Smith, Digital Signal Processing, Seitech Publications, 2012. 8. S.K. Mitra, Digi		•	ete time si	gnals.	
To introduce frequency domain representation and analysis of signals. Syllabus Signals and systems – basic operations on signals – continuous time and discrete time signals Continuous time and discrete time systems –properties of systems - Z-transform – region of convergence – properties of FT – relation between Z-transform. Fourier transform (FT) - Radix- fert algorithms – butterfly structure. Digital filter structures –structures for IIR - Structures for FIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. v. Appreciate IIR digital filter structures. v. Appreciate FIR digital Signal Processing , Wiley India, 2012. References 1. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing Series), 3e, Pearson, 2009. 3. D. Ganesh Rao and V. P. Gejji, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 4. J.K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan, 1989 5. Li Tan , Digital Signal Processing, McGraw Hill (SCHAUM'S Outlines), 2011. 7. P. Ramesh Babu, Digital Signal Processing, Scitech Publications, Elsevier, 2013. 6. M.H. Hayes, Digital Signal Processing , Scitech Publications, 2012. 8. S.K. Mitra, Digital Signal Processing : A Practical Guide for Engineers and Scientists, Elsevier India. Course Plan		-		-	
Syllabus Signals and systems -basic operations on signals - continuous time and discrete time signals Continuous time and discrete time systems - properties of systems - Z-transform - region of convergence - properties of FT - relation between Z-transform and FT. Discrete Fourier transform (PFT) - Radix-FFT algorithms - butterfly structure. Digital filter structures -structures for IIR - Structures for FT. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. iv. Appreciate IR digital filter structures. vi. Appreciate IR dingital filter structures.					
Signals and systems -basic operations on signals - continuous time and discrete time signals Continuous time and discrete time systems -properties of systems - Z-transform - region convergence - properties of Z-transform - fourier transform (FT) cliscrete time signals - properties of FT - relation between Z-transform and FT. Discrete Fourier transform (DFT) - Properties of DFT - inverse DFT - Fast Fourier transform (FFT) - Radix-FFT algorithms - butterfly structure. Digital filter structures -structures for IIR - Structures for FR. Expected Outcome The Students will be able to Image: signals using Z Transform and FT. ii. Identify different types of continuous time and discrete time signals. Image: signals using Z Transform and FT. iv. Appreciate IIR digital filter structures. Fex <i>i</i> . Appreciate IIR digital filter structures. Image: signals using Z Transform and FT. <i>i</i> . Appreciate IIR digital filter structures. Image: signals using Z Transform and FT. <i>i</i> . Appreciate IIR digital filter structures. Image: signals using Z Transform and FT. <i>i</i> . Appreciate IIR digital filter structures. Image: signal Z and Z an	Syllabus	ALL ADUUL NALA	IVI		
convergence – properties of Z-transform – inverse Z-transform. Fourier transform (FT) of discrete time signals – properties of FT – relation between Z-transform and FT. Discrete Fourie transform (DFT) - Properties of DFT – inverse DFT - Fast Fourier transform (FFT) - Radix- FT algorithms – butterfly structure. Digital filter structures – structures for IIR - Structures for FIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. iii. Analyse signals using Z Transform and FT. iv. Analyse signals using DFT and FT. v. Appreciate IIR digital filter structures. Fext Books 1. M.N. Bandyopadhyaya , Introduction to Signals and Systems and Digital Signal Processing, PHI, 2005. 2. S.D. Apte, Digital Signal Processing , Wiley India, 2012. References 1. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing Series), 3e, Pearson, 2009. 3. D. Ganesh Rao and V. P. Gejji, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 4. J.K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan, 1989 5. Li Tan , Digital Signal Processing, Fundamentals and Applications, Elsevier, 2013. 6. M. H. Hayes, Digital Signal Processing, McGraw Hill (SCHAUM'S Outlines), 2011. 7. P. Ramesh Babu, Digital Signal Processing, McGraw Hill Cucation, 2012. 8. S.K. Mitra, Digital Signal Processing : A Practical Guide for Engineers and Scientists, Elsevier India. 5. Li Tan , Digital Signal Processing : A Practical Guide for Engineers and Scientists, Elsevier India. 6. M. H. Hayes, Digital Signal Processing : A Practical Guide for Engineers and Scientists, Elsevier India. 7. Course Plan	•	d systems -basic operations on signals - continuous time an	d discrete	time	signals –
discrete time signals – properties of FT – relation between Z-transform and FT. Discrete Fourier transform (DFT) - Properties of DFT – inverse DFT - Fast Fourier transform (FFT) - Radix- FFT algorithms – butterfly structure. Digital filter structures – structures for IIR - Structures for FIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. iv. Analyse signals using DFT and FFT. v. Appreciate IIR digital filter structures. Fext Books 1. M.N. Bandyopadhyaya , Introduction to Signals and Systems and Digital Signal Processing, PHI, 2005. 2. S.D. Apte, Digital Signal Processing , Wiley India, 2012. References 1. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing Series), 3e, Pearson, 2009. 3. D. Ganesh Rao and V. P. Gejji, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 4. J.K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan, 1989 5. Li Tan , Digital Signal Processing, Fundamentals and Applications, Elsevier, 2013. 6. M. H. Hayes, Digital Signal Processing, McGraw Hill (SCHAUM'S Outlines), 2011. 7. P. Ramesh Babu, Digital Signal Processing, Scitech Publications, 2012. 8. S.K. Mitra, Digital Signal Processing , McGraw Hill Education, 2013. 9. S.W. Smith, Digital Signal Processing : A Practical Guide for Engineers and Scientists, Elsevier India. Course Plan Module Contents	Continuou	s time and discrete time systems -properties of systems -	Z-transfor	m – r	egion of
ransform (DFT) - Properties of DFT – inverse DFT - Fast Fourier transform (FFT) - Radix- FFT algorithms – butterfly structure. Digital filter structures – structures for IIR - Structures for FIR Structures for IIR - Structures for IIR - Structures for The Students will be able to i. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. v. Appreciate IIR digital filter structures. vi. Appreciate FIR digital filter structures. V. Appreciate FIR digital filter structures. Pert Books 1. M.N. Bandyopadhyaya , Introduction to Signals and Systems and Digital Signal Processing, PHI, 2005. 2. S.D. Apte, Digital Signal Processing , Wiley India, 2012. References 1. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing Series), 3e, Pearson, 2009. 3. D. Ganesh Rao and V. P. Gejji, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 4. J.K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan, 1989 5. Li Tan , Digital Signal Processing, Fundamentals and Applications, Elsevier, 2013. 6. M. H. Hayes, Digital Signal Processing, McGraw Hill (SCHAUM'S Outlines), 2011. 7. P. Ramesh Babu, Digital Signal Processing, Scitech Publications, 2012. 8. S.K. Mitra, Digital Signal Processing : A Practical Guide for Engineers and Scientists, Elsevier India. 6. Sem. 7. Sourse Plan Module Contents					
FFT algorithms – butterfly structure. Digital filter structures –structures for IIR - Structures for FIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. iii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. iv. Analyse signals using DFT and FFT. v. Appreciate IIR digital filter structures. vi. Appreciate FIR digital filter structures. vi. Appreciate FIR digital filter structures. vi. Appreciate IR digital Signal Processing , Wiley India, 2012. References 1. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing Series), 3e, Pearson, 2009. 3. D. Ganesh Rao and V. P. Gejji, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 4. J.K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan, 1989 5. Li Tan , Digital Signal Processing, Fundamentals and Applications, Elsevier, 2013. 6. M. H. Hayes, Digital Signal Processing, McGraw Hill (SCHAUM'S					
FIR. Expected Outcome The Students will be able to i. Identify different types of continuous time and discrete time signals. ii. Identify different types of continuous time and discrete time systems. iii. Analyse signals using Z Transform and FT. iv. Analyse signals using DFT and FFT. v. Appreciate IIR digital filter structures. <i>Vi.</i> Appreciate FIR digital filter structures. <i>Processing</i> , PHI, 2005. 2. S.D. Apte, Digital Signal Processing , Wiley India, 2012. References 1. A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition 2007. 2. A.V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing (Prentice Hall Signal Processing Series), 3e, Pearson, 2009. 3. D. Ganesh Rao and V. P. Geiji, Digital Signal Processing Theory and Lab Practice, Pearson Education Ltd. 4. J.K. Proakis and D.G. Manolakis, Introduction to Digital Signal Processing, MacMillan, 1989 5. Li Tan , Digital Signal Processing, Fundamentals and Applications, Elsevier, 2013. 6. M. H. Hayes, Digital Signal Processing, McGraw Hill (SCHAUM'S Outlines), 2011. 7. P. Ramesh Babu, Digital Signal Processing, McGraw Hill Education, 2012. 8. S.K. Mitra, Digital Signal Processing : A Practical Guide for Engineers and Scientists, Elsevier India. Course Plan Module					

Ι	Signals and systems – introduction – basic operations on signals – continuous time and discrete time signals –step, impulse, ramp, exponential and sinusoidal functions.		15 %
II	Continuous time and discrete time systems –properties of systems – linearity, causality, time invariance, memory, stability, invertibility. Linear time invariant systems – convolution.	07	15 %
	FIRST INTERNAL EXAM		4
Z-transform – region of convergence – properties of Z-transform – inverse Z-transform. Fourier transform (FT) of discrete time signals – properties of FT – relation between Z-transform and FT.		07	15 %
IV Discrete Fourier transform (DFT) - Properties of DFT – inverse DFT - Fast Fourier transform (FFT) - Radix-2 FFT algorithms – butterfly structure.		07	15 %
	SECOND INTERNAL EXAM		
V	Digital filter structures – block diagram and signal flow graph representation – structures for IIR – direct form structure – Cascade form structure – parallel form structure – lattice structure.	07	20 %
VI	Structures for FIR – direct form structures – direct form structure of linear phase system – cascade form structure – frequency sampling structure – lattice structure.	07	20 %
	END SEMESTER EXAM		

1. There will be *five* parts in the question paper – A, B, C, D, E

- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II;All<u>four</u> questions have to be answered.

3. Part B

- a. Total marks : 18
- <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts

4. Part C

- a. Total marks : 12
- b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.

5. Part D

- a. Total marks : 18
- b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV;<u>Two</u>questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.

There should be at least 60% analytical/numerical questions

Course code	Course Name	T-P- edits		ar of luction
CS365	OPTIMIZATION TECHNIQUES 3-	0-0-3	20)16
	Prerequisite: Nil			
• Te	D bjectives to build an understanding on the basics of optimization techniques. to introduce basics of linear programming and meta- heuristic searc	h techn	iques	
Syllabus Basics of Transport Algorithn	⁷ Operations Research - Formulation of optimization problems - ation Problem - Assignment Problem - Network flow Problem - n - Simulated Annealing – Applications.	Linear	· Program	
The Stude i. Fo	Dutcome ents will be able to prmulate mathematical models for optimization problems. nalyze the complexity of solutions to an optimization problem.			
	esign programs using meta-heuristic search concepts to solve optime evelop hybrid models to solve an optimization problem.	nizatior	n probler	ns.
ap 2. H 3. R Reference 1. G 2. G W 3. K In 4. R	ass S. I., Introduction to Linear Programming, Tata McGraw Hill. oldberg, Genetic algorithms in Search, optimization and Machine I Vesley, 1989. . Deb, Optimization for engineering design – algorithms and exam dia, 2004. eeves C., Modern heuristic techniques for combinatorial problems, 093.	lucation 34. Learnin ples, Pr	n, 2010. g, Addis entice H	all of
	COURSE PLAN	-		
Module	Esto. Contents		Hours	End Sem. Exam Marks
I	Decision-making procedure under certainty and under uncertain Operations Research-Probability and decision- making- Queuin Waiting line theory-Simulation and Monte- Carlo Technique- N and organization of optimization problems- Scope and hierarc optimization- Typical applications of optimization.	ng or lature	08	15%
II	Essential features of optimization problems - Objective func Continuous functions - Discrete functions - Unimodal functi Convex and concave functions, Investment costs and operating in objective function - Optimizing profitably constraints-Interna external constraints-Formulation of optimization prob Continuous functions - Discrete functions - Unimodal functi Convex and concave functions.	ons - costs l and lems.	07	15%

	FIRST INTERNAL EXAM		
III	Necessary and sufficient conditions for optimum of unconstrained functions-Numerical methods for unconstrained functions - One- dimensional search - Gradient-free search with fixed step size. Linear Programming - Basic concepts of linear programming - Graphical interpretation-Simplex method - Apparent difficulties in the Simplex method.	06	15%
IV	Transportation Problem, Loops in transportation table, Methods of finding initial basic feasible solution, Tests for optimality. Assignment Problem, Mathematical form of assignment problem, methods of solution.	06	15%
	SECOND INTERNAL EXAM		-
V	Network analysis by linear programming and shortest route, maximal flow problem. Introduction to Non-traditional optimization, Computational Complexity – NP-Hard, NP-Complete. Tabu Search- Basic Tabu search, Neighborhood, Candidate list, Short term and Long term memory	07	20%
VI	Genetic Algorithms- Basic concepts, Encoding, Selection, Crossover, Mutation. Simulated Annealing - Acceptance probability, Cooling, Neighborhoods, Cost function. Application of GA and Simulated Annealing in solving sequencing and scheduling problems and Travelling salesman problem.	08	20%

END SEMESTER EXAM

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions. Estd. 2014

Course code	Course Name	L-T-P - Credits		ar of duction
CS367	Logic for Computer Science	3-0-0-3	-	016
Pre-requ	isites : CS205 Data Structures			
Course (Dbjectives			
•	To introduce the concepts of mathematical logic and its impo			
٠	To discuss propositional, predicate, temporal and modal logic	and their	applica	tions.
Syllabus		NA.		
-	onal Logic, Resolution, binary decision diagrams, Predicate le	ogic, resol	ution, te	emporal
	luction, program verification, modal logic.	A		
-	Outcome ents will be able to			
	ain the concept of logic and its importance.			
	nderstand fundamental concepts in propositional, predicate and	temporal	logic an	nd annly
	solution techniques.	temporar	iogie al	ia appiy
	pply the concept of program verification in real-world scenario	S.		
	now the fundamental concepts in modal logic.			
Text Boo				
1. A	rindhama Singh, Logics for Computer Science, Prentice Hall In	dia, 2004.		
2. M	odechai Ben-Ari, Mathematical Logic for Computer Science, S	pringer, 3/	e, 2012	
Reference				
	lichael Huth, Mark Ryan, Logic in Computer Science: Model	ing and R	easonin	g about
S	ystems, Cambridge University Press, 2005.			
	Course Plan			
				End
Madula	Contents			Sem.
Module	Contents	П	ours	Exam
				Marks
	Introductory Concepts: Mathematical Logic, Propositional 1	•		
		ogram		
	Verification. (Reading: Ben-Ari, Chapter 1)		0.6	1 = 0 /
Ι	Propositional Logic: Formulae and interpretations, Equiva		06	15%
	Satisfiability& Validity, Semantic Tableaux, Soundness Completeness. (Reading: Ben-Ari, Chapter 2 except			
	Completeness. (Reading: Ben-Ari, Chapter 2 except Additional Reading : Singh, Chapter 1)	2.4,		
	The Hilbert Deductive System, Derived Rules, Theorems	s and		
	operators, Soundness and Completeness, Consistency. (Rea			
	Ben-Ari, Chapter 3 except 3.7 and 3.8, Additional Read	-		
II	Singh, Chapter 1)		06	15%
	Resolution in Propositional Logic: Conjunctive Normal	form,		
	Clausal form, resolution rule. (Reading: Ben-Ari, Chapte			
	4,2, 4.3, Additional Reading : Singh, Chapter 1)			
	FIRST INTERNAL EXAM			
	Binary Decision Diagrams: Definition, Reduced and ordered	BDD,		
	Operators. (Reading: Ben-Ari, Chapter 5.1 – 5.5)			
III	Predicate Logic: Relations, predicates, formulae and interpret		07	15%
	logical equivalence, semantic tableaux, soundness. Reading:			
	Ari, Chapter 7.1-7.6, Additional Reading : Singh, Chapter	7)		

IV	The Hilbert deduction system for predicate logic. Functions, PCNF and clausal form, Herbrand model. Resolution in predicate logic: ground resolution, substitution, unification, general resolution. Reading: Ben-Ari, Chapter 8.1-8.4, 9.1, 9.3, 10.1-10.4, Additional Reading : Singh, Chapter 2, Chapter 3)	08	15%
	SECOND INTERNAL EXAM		
v	Temporal logic: Syntax and semantics, models of time, linear time temporal logic, semantic tableaux. Deduction system of temporal logic. (Reading: Ben-Ari, Chapter 13.1-13.5, 14.1-14.2)	07	20%
VI	 Program Verification: Need for verification, Framework for verification, Verification of sequential programs, deductive system, verification, synthesis. (Reading: Ben-Ari, Chapter 15.1-15.4, Additional Reading : Singh, Chapter 5) Modal Logic: Need for modal logic, Case Study: Syntax and Semantics of K, Axiomatic System KC, (Reading: Singh, Chapter 6.1-6.3) 	08	20%
	END SEMESTER EXAM		

Assignments: Some of the assignments can be given on an interactive theorem prover like Isabelle or Coq.

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; <u>Allfour</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questionseach having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.

There should be at least 60% analytical/numerical questions.

	Course Name	-T-P - redits	Year of Introduction
CS369	Digital System Testing & Testable Design3-	-0-0-3	2016
Pre-requ	iisites : CS234 Digital Systems Lab		
Course (T T for T Syllabus Basic ten simulation design for Expected	Objectives o expose the students to the basics of digital testing techniques appl o introduce the concepts of algorithm development for automatic or digital circuits. o discuss fundamentals of design for testability.	test patter	rn generation
ii. A ci iii. E iv. G F v. E m	ppreciate the basics of VLSI testing and functions modeling of cir pply fault modeling using single stuck & multiple stuck modelin rcuits. valuate different methods for logic and fault simulations. enerate test patterns using automatic test pattern generation metho AN algorithms for combinational circuits. xplain automatic test pattern generation using time frame expansion bethod for sequential circuits. esign digital circuits using scan path and self tests.	ng for c ods like D	, PODEM &
2. N D 3. N	lexander Miczo, Digital Logic Testing and Simulation, Wiley, 2e, 2 lichael L. Bushnell and Vishwani D. Agrawal, Essentials of F igital, Memory and Mixed-Signal VLSI Circuits, Springer, 2002. liron Abramovici, Melvin A. Breuer, Arthur D. Friedman, Digital estable Design, Jaico Publishers, 2006.	Electronic	-
Referen	ainalabedin Navabi, Digital System test and testable design, Spring	er, 2011.	
Referen	ainalabedin Navabi, Digital System test and testable design, Spring Course Plan	er, 2011.	
Referen		er, 2011.	urs End Sem. Exam Marks
Referen 1. Z	Course Plan 2014	Ho erent es of 0	urs Sem. Exam

III	Logic & fault Simulation: Simulationfor verification& test evaluation, types of simulation – compiled code & Event driven, serial fault simulation, statistical method for fault simulation.	07	15%
IV	Combinational circuit test generation : ATG for SSFs in combinational circuits – fault oriented ATG- fault independent ATG-random test generation, Sensitized path, D-algorithm, PODEM and FAN.	07	15%
	SECOND INTERNAL EXAM		
V	Sequential circuit test generation: ATPG for single clock synchronous circuits, time frame expansion method, simulation based sequential circuit ATPG – genetic algorithm.	07	20%
VI	Design for Testability: introduction to testability, design for testability techniques, controllability and observability by means of scan registers, generic scan based designs – scan path, boundary scan, Introduction to BIST.	09	20%
	END SEMESTER EXAM		

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules I and II;All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three sub-parts

4. Part C

- a. Total marks : 12
- b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18

a. Total Marks: 40

- b. <u>*Three*</u> questionseach having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E

- 2014
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.

Course code	Course Name	L-T-P - Credits	Year of			
			Introduction			
**341	DESIGN PROJECT	0-1-2-2	2016			
	Prerequisite : Nil					

Course Objectives

- To understand the engineering aspects of design with reference to simple products
- To foster innovation in design of products, processes or systems
- To develop design that add value to products and solve technical problems

Course Plan

Study :Take minimum three simple products, processes or techniques in the area of specialisation, study, analyse and present them. The analysis shall be focused on functionality, strength, material, manufacture/construction, quality, reliability, aesthetics, ergonomics, safety, maintenance, handling, sustainability, cost etc. whichever are applicable. Each student in the group has to present individually; choosing different products, processes or techniques.

Design: The project team shall identify an innovative product, process or technology and proceed with detailed design. At the end, the team has to document it properly and present and defend it. The design is expected to concentrate on functionality, design for strength is not expected.

Note : The one hour/week allotted for tutorial shall be used for discussions and presentations. The project team (not exceeding four) can be students from different branches, if the design problem is multidisciplinary.

Expected outcome.

The students will be able to

- i. Think innovatively on the development of components, products, processes or technologies in the engineering field
- ii. Analyse the problem requirements and arrive workable design solutions

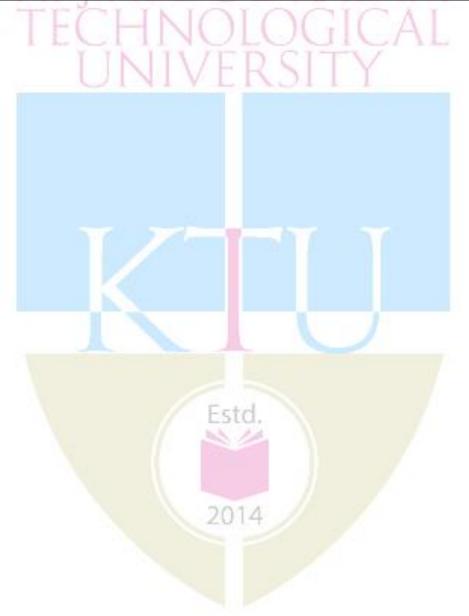
Fetal

Reference:

Michael Luchs, Scott Swan, Abbie Griffin, 2015. Design Thinking. 405 pages, John Wiley & Sons, Inc

Evaluation

First evaluation (Immediately after first internal examination)20 marksSecond evaluation (Immediately after second internal examination)20 marksFinal evaluation (Last week of the semester)60 marks


Note: All the three evaluations are mandatory for course completion and for awarding the final grade.

Course code	Course Name	L-T-P Credits	Year of Introduction
CS331	SYSTEM SOFTWARE LAB	0-0-3-1	2016
	Prerequisite: Nil		
Course Obj	ectives		
	build an understanding on design and implementation	of different t	ypes of system
	vare.	AAA	
	rcises/Experiments: (Exercises/experiments marked	with * are m	andatory from
each part. '	Fotal 12 Exercises/experiments are mandatory)	TAT	
1 01	Part A		C 1
	ulate the following non-preemptive CPU scheduling al	igorithms to	lind turnaround
a) FC	d waiting time.CFSb) SJFc) Round Robin (pre-emptive)	d) Prio	rity
	alate the following file allocation strategies.	u) 1 110	iity
	equential b) Indexed c) Linked		
,	ement the different paging techniques of memory manag	gement.	
1	alate the following file organization techniques *		
	• • •) Hierarchica	l
5. Impl	ement the banker's algorithm for deadlock avoidance.*		
	alate the following disk scheduling algorithms. *		
a) FO			
	alate the following page replacement algorithms		
a) FI		a *	
	ement the producer-consumer problem using semaphore e a program to simulate the working of the dining philos		em *
<i>J.</i> win	Part B	oplici s proor	
10. Imp	lement the symbol table functions: create, insert, modify	, search, and	display.
	lement pass one of a two pass assembler. *	,	and proof the
	lement pass two of a two pass assembler. *		
-	lement a single pass assembler. *		
	lement a two pass macro processor *		
	plement a single pass macro processor.		
	lement an absolute loader.		
-	lement a relocating loader.		
-	lement pass one of a direct-linking loader.		
	lement pass two of a direct-linking loader. lement a simple text editor with features like insertion /	deletion of a	pharacter word
	sentence.		maracter, word
	lement a symbol table with suitable hashing.*		

Expected Outcome

The students will be able to

- i. Compare and analyze CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority.
- ii. Implement basic memory management schemes like paging.
- iii. Implement synchronization techniques using semaphores etc.
- iv. Implement banker's algorithm for deadlock avoidance.
- v. Implement memory management schemes and page replacement schemes and file allocation and organization techniques.
- vi. Implement system software such as loaders, assemblers and macro processor.

Course code	Course Name	L-T-P - Credits	Year of Introduction
CS333	APPLICATION SOFTWARE DEVELOPMENT LAB	0-0-3-1	2016
	isite : CS208 Principles of Database Design	0001	-010
_	Dijectives		
	o introduce basic commands and operations on database.		
	o introduce stored programming concepts (PL-SQL) using Cur	sors and T	riggers.
	o familiarize front end tools of database.		
	xercises/Experiments: (Exercises/experiments marked with	* are mai	ndatory. Total
	ises/experiments are mandatory)		14400190 1004
	reation of a database using DDL commands and writes	DOL quer	ies to retrieve
	formation from the database.	A	
	erforming DML commands like Insertion, Deletion, Modifying	, Altering,	and Updating
	cords based on conditions.		1 0
3. C	reating relationship between the databases. *		
	reating a database to set various constraints. *		
	ractice of SQL TCL commands like Rollback, Commit, Savepo	oint.	
6. P	ractice of SQL DCL commands for granting and revoking user	privileges.	
7. C	reation of Views and Assertions *		
8. Ir	nplementation of Build in functions in RDBMS *		
9. Ir	nplementation of various aggregate functions in SQL *		
10. Ir	nplementation of Order By, Group By& Having clause. *		
	nplementation of set operators, nested queries and Join queries	*	
	nplementation of various control structures using PL/SQL *		
	reation of Procedures and Functions *		
	reation of Packages *		
	reation of database Triggers and Cursors *		
	ractice various front-end tools and report generation.		
	reating Forms and Menus		
	lini project (Application Development using Oracle/ MySQL u	sing Datab	ase
CO	onnectivity)*		
a.			
b	1 0		
C.			
d.	5		
e. f.	Personal Information System.		
g. b			
h. Expected	6		
-	I Outcome ents will be able to		
	Design and implement a database for a given proble////m using	databasa d	esian
	principles.	ualabase u	651211
-	Apply stored programming concepts (PL-SQL) using Cursors a	nd Trigger	¢
	Jse graphical user interface, Event Handling and Database con		

- iii. Use graphical user interface, Event Handling and Database connectivity to develop and deploy applications and applets.
- *iv.* Develop medium-sized project in a team.