MODULE 4-ANALOG INTEGRATED CIRCUITS
 CREDITS-4
 COURSE CODE: EC 204

SCHMITT TRIGGER USING OPAMP

(a) Circuit Diagram

(b) Input Output Characteristics

Schmitt Trigger

- Assume Vout=+Vsat,then input at non inverting terminal will be β Vsat where $\beta=\frac{R 2}{R 1+R 2}$
- When voltage at inverting terminal will be less than Vf then Vo=+Vsat
- When voltage at inverting terminal will be greater than Vf then $\mathrm{Vo}=-$ Vsat
- Switching between + Vsat and -Vsat forms a square wave and thus squaring circuit works.

Continued

- If positive feedback is added to the comparator circuit ,gain can be increased.
- If the loop gain is unity,gain with feedback is infinite and transits between -Vsat and +Vsat
- Also exhibits a phenomenon called hysteresis/backlash
- Input voltage triggers the o/p voltage Vo every time it exceeds certain voltage levels
- Voltage levels are Upper Threshold voltage(Vut) and Lower Threshold voltage(Vlt)
- Hysterisis width $=$ Vut-Vlt $=\beta$ Vsat $-(-\beta v s a t)=2 \beta V$ sat
1.Rı $=50 \mathrm{k}^{\prime} \Omega, \mathrm{R} 2=100$ ' $\Omega, \mathrm{Vref}=\mathrm{oV} . \mathrm{Vi}=1 \mathrm{Vpp}, \mathrm{Vsat}=+/-14 \mathrm{~V}$. Determine Vut and Vlt

Vut $=\frac{100}{50100} * 14=28 \mathrm{mV}$
$\mathrm{Vlt}=\frac{100}{50100}^{*}-14=-28 \mathrm{mV}$

AST ABLE MULTIVIBR ATOR USING OPAMP

- Assume Vo=+Vsat voltage at non inverting terminal be β Vsat where $\beta=\frac{R 2}{R 1+R 2}$
- At the same time capacitor charges through R.When voltage at the inverting terminal is less than βV sat,o / p remains to be at $+V$ sat and when voltage increases beyond β Vsat ,o/p switches to $-V$ sat.Then the $V+=-\beta V$ sat
- At that time capacitor charges to -Vsat.o/p remains to be at -Vsat until V- is is more negative than $-\beta V$ sat. When it becomes less negative than $-\beta V$ sat , o / p becomes + Vsat. Thus square waveform is generated.

- The period of the output waveform is determined by the RC time constant
- Time period $: T=2 R C \ln \left(\frac{1+\beta}{1-\beta}\right)$
- The frequency is determined by the time it takes the capacitor to charge from βV sat to $+\beta V$ sat and vice versa. The voltage across the capacitor as a function of time is given by,
- $\mathrm{Vc}(\mathrm{t})=\mathrm{Vf}+(\mathrm{Vi}-\mathrm{Vf}) e^{\frac{-t}{R C}}$

Continued.

Final value, $V f=+V$ sat and initial value, $\mathrm{Vi}=-\beta \mathrm{V}$ sat

- $\mathrm{Vc}(\mathrm{t})=\mathrm{V}$ sat-vsat $(1+\beta) e^{\frac{-t}{R C}}$
- At $\mathrm{t}=\mathrm{T} 1$,voltage across the capacitor reaches β Vsat and switching takes place
- $\beta V_{\text {sat }}=V$ sat-vsat $(1+\beta) e^{\frac{-t}{R C}}$
- $\mathrm{T}_{1}=\mathrm{RCln}\left(\frac{1+\beta}{1-\beta}\right)$ half of the period

$$
\mathrm{T}=2 \mathrm{~T} 1=2 \mathrm{RC} \ln \left(\frac{1+\beta}{1-\beta}\right)
$$

MONOSTABLE MULTIVIBRATOR USING OPAMP

- One stable state and the other quasi stable

- If Diode clamps the capacitor voltage to o.7Vwhen the o/p is at +Vsat
- A pulse signal when passed through the differentiator RC and Diode provides negative going trigger to the + input terminal.
- Assume $\mathrm{Vo}=+\mathrm{V}$ sat.Diode conducts and capacitor gets clamped to 0.7 V
- Voltage at non inverting terminal is $+\beta$ Vsat $-V_{1}$
- If effective voltage is less than $0.7 \mathrm{~V}, \mathrm{o} / \mathrm{p}$ switches from +Vsat to-Vsat.

Working continued

Then the diode will be reverse biased and capacitor charges exponentally to -Vsat through resistance R

- Voltage at the non inverting terminal be $-\beta$ Vsat. When the capacitor voltage becomes slightly more negative than $-\beta$ Vsat, o / p switches to +Vsat .

(b) Negative Trigger Pulse

(c) Waveform of v_{c}

PULSEWIDTH

- $\sqrt{\mathrm{c}(\mathrm{t})=\mathrm{Vf}+(\mathrm{Vi}-\mathrm{Vf}) e^{\frac{-t}{R C}}}$
- As $\mathrm{Vf}=-\mathrm{Vsat}, \mathrm{Vi}=\mathrm{Vd}$
- $\mathrm{Vc}(\mathrm{t})=-\mathrm{Vsat}+(\mathrm{Vd}+\mathrm{Vsat}) e^{\frac{-t}{R C}}$
- $A t t=T, V c(t)=-\beta V$ sat
- $-\beta$ Vsat $=-V$ sat $+(\mathrm{Vd}+V$ sat $) e^{\frac{-t}{R C}}$
- $e^{\frac{t}{R C}}=\frac{V d+V \text { sat }}{-\beta V \text { sat }+V \text { sat }}=\frac{V \operatorname{sat}(1+V d / V \text { sat })}{V \operatorname{sat}(1-\beta)}$
- $\mathrm{T}=\mathrm{RC} \ln \frac{(1+V d / V \text { sat })}{(1-\beta)}$ where $\beta=\frac{R 2}{R 1+R 2}$
- If V sat $\gg V d$ and $R 1=R 2$ so that $\beta=0.5$ then

$$
T=0.69 R C
$$

COMPARATORS

Compares a signal voltage applied at one input of an opamp with a
known reference voltage

Non-Inverting Comparator Circuit

- A reference voltage ,Vref is applied To -ve input and input is applied to +ve i/p.
- When Vi<Vref o/p voltage is -Vsat
- When Vi>Vref,o/p voltage is +Vsat

For a +ve Vref

Continued

Vref is applied to the + input and Vin is

- Applied to the - input.
- When Vi<Vref o/p voltage is +Vsat
- When Vi>Vref,o/p voltage is -Vsat

ZERO CROSSING DETECTOR

- Vref is set to zero
- Sine to square wave generator
- Vin is applied to inverting i / p

TRIANGULAR WAVE GENERATOR

Integrating a square wave

Fig. 2.85 Triangular wave generator

Alternate circuit

Using lesser number of components

- Two level comparator followed by an integrator

- o/p of comparator A is a square wave of amplitude $+/-$ Vsat and is applied to -ve input terminal of the integrator B producing a triangular wave.
- Triangular wave is fed back as input to the comparator A through a voltage divider R2R3
- Assume o/p of A is at +Vsat.o/p of integrator is -ve going ramp
- One end of the voltage divider is at +Vsat and other end at the negative going ramp of B.
- At time $t=t \mathrm{t}$, when the negative going ramp attains a value of
-Vramp,effective voltage at P becomes slightly less than oV.This switches o/p of A from +Vsat to -Vsat.

Continued.....

When o/p is at -Vsat,o/p of B increases to +Vramp

- At time $t=t 2$, when the positive going ramp attains a value of + Vramp, effective voltage at P becomes slightly above oV.This switches o/p of A from -Vsat to +Vsat. Cycle repeats and forms a triangular waveform.
- Amplitude of the triangular wave depends upon $R C$ value of the integrator B and o / p voltage level of A

FREQUENCY:

Effective voltage at P when the o / p of A is at $+V$ sat
$-V r a m p+\frac{R 2}{R 2+R 3}(+$ Vsat-(-Vramp))
At $\mathrm{t}=\mathrm{t}$, voltage at point $\mathrm{P}=\mathrm{o}$
$-\operatorname{Vramp}+\frac{R 2}{R 2+R 3}(+$ Vsat- $(-$ Vramp $))=0$
$-\operatorname{Vramp}+\operatorname{Vramp}\left(\frac{R 2}{R 2+R 3}\right)+\operatorname{Vsat}\left(\frac{R 2}{R 2+R 3}\right)=0$
$-\operatorname{Vramp}\left(\frac{R 3}{R 2+R 3}\right)=-\operatorname{Vsat}\left(\frac{R 2}{R 2+R 3}\right)$
$-\operatorname{Vramp}=-\operatorname{Vsat}\left(\frac{R 2}{R 3}\right)$
Effective voltage at P when the o / p of A is at $-V$ sat
Vramp= Vsat $\left(\frac{R 2}{R 3}\right)------------------\quad 2$

Peak to peak amplitude of the triangular wave, $\operatorname{Vo}(p-p)=2 \operatorname{Vsat}\left(\frac{R 2}{R 3}\right)--A$

The time taken by the output to swing from - Vramp to +Vramp (or from + Vramp to Vramp) is equal to half the time period T/2.
Time can be calculated from the integrator o/p equation,

$$
\begin{aligned}
\mathrm{Vo}(\mathrm{p}-\mathrm{p}) & =\frac{-1}{R 1 C 1} \int_{0}^{T / 2}(-V s a t) d t \\
& =\frac{V s a t}{R 1 C 1}(\mathrm{~T} / 2) \quad \text { or } \mathrm{T}=2 \mathrm{RiCl}_{1} \frac{V o(p-p)}{V s a t}-\cdots--\mathrm{B}
\end{aligned}
$$

Substitute A in B

$$
\mathrm{T}=\frac{4 R 1 R 2 C 1}{R 3}
$$

Frequency of oscillation, $\mathrm{f}=\frac{1}{T}=\frac{R 3}{4 R 1 R 2 C 1}$

SAWTOOTH WAVEFORM GENERATOR:

- Sawtooth waveform can be also generated by an asymmetrical astable multivibrator followed by an integrator.
- The rise time of triangular wave is always equal to its fall of time.tr=tf
- For saw tooth generator, rise time may be much higher than its fall of time.tr>tf
- The triangular wave generator can be converted in to a saw tooth wave generator by injecting a variable dc voltage into the non-inverting terminal of the integrator.
- a potentiometer is used

$\mathrm{f}=\left(\frac{1}{R C}\right) \frac{V i}{V r e f}$

1.Design a sawtooth wave generator for 10 V peak and frequency of 200 Hz .Assume $\mathrm{Vi}=2 \mathrm{~V}$ and $\mathrm{Vref}=10 \mathrm{~V}$
Ans:Let $\mathrm{R}=10 \mathrm{~K}^{\prime} \Omega \mathrm{C}=0.1 \mu \mathrm{~F}$
$\mathrm{F}=\frac{1}{10 * 10^{3} * 0.1 * 10^{-6}}(2 / 10)=200$
2.Determine period, frequency, peak value of square wave, peak value of triangular wave. Assume $\mathrm{R}=100 \mathrm{~K}^{\prime} \Omega, \mathrm{R} 2=10 \mathrm{~K}^{\prime} \Omega, \mathrm{R} 3=20 \mathrm{~K}{ }^{\prime} \Omega, \mathrm{C} 1=0.01 \mu \mathrm{~F}, \mathrm{~V}$ sat $=+/-$ 14 V

$$
\text { Ans: } \mathrm{T}=\frac{4 R 1 R 2 C 1}{R 3}=2 \mathrm{~ms}
$$

$$
\mathrm{f}=1 / \mathrm{T}=500 \mathrm{~Hz}
$$

Peak value $=+14 \mathrm{~V}$ and -14 V
Vramp $=\operatorname{Vsat}\left(\frac{R 2}{R 3}\right)=7 \mathrm{~V}$

ACTIVE FILTERS

Simplest way-Filter is made by using passive components(R,L,C)-which works for high frequencies.

- Active filters-opamp as active element + RLC as passive elements
- Advantages:
> Increased current gain
$>$ No inductors-so reduction in size, weight and cost.
$>$ Reduction in parasitic capacitance.
$>$ Small cost
$>$ Rapid,stable and econonmical design of filters.
$>$ Easily tunable due to flexibility in gain and frequency adjustments.
$>$ High i/p impedance and low o/p impedance for opamp.So no loading effect and no need of buffer amplifier while cascading
$>$ Can realize rational function using active network
$>$ Eliminates passivity and reciprocity of RLC network
- Limitations:
$>$ High frequency response is limited by the gain-BW product and slew rate leading to lower BW
> Large sensitivity(variation of filter parameter with supply voltage, temperature due to variation in gain of opamp, frequency response)
$>$ Requires dual polarity dc power supply.

FIRST ORDER LOWPASS FILTER

Single RC network connected to the +terminal of non inverting opamp - Rı and Rf determine the gain of the filter in pass band.
Voltage across the capacitor C (s-domain
$\mathrm{V}_{1}(\mathrm{~s})=\frac{\frac{1}{s C}}{\frac{1}{s C}+R} \mathrm{Vin}(\mathrm{s}) \quad\left[\mathrm{Vin} * \mathrm{Xc} / \mathrm{R}+\mathrm{Xc}=\mathrm{V}_{1}\right]$

$\frac{\mathrm{V} 1(\mathrm{~s})}{\operatorname{Vin}(\mathrm{s})}=\frac{1}{\mathrm{RCs}+1}^{-----1}$
Closed loop gain $\mathrm{A}=[(1+\mathrm{Rf} / \mathrm{R})]=\frac{V o(s)}{V 1(s)}-2$
Overall $\mathrm{TF}=\frac{A}{\text { RCs }+1}----------3$
Let $\mathrm{wh}=\frac{1}{R C}$
Overall TF= $\frac{A w h}{s+w h}------------T r$

Put $\mathrm{s}=\mathrm{jw}$ in 3
$\mathrm{H}(\mathrm{jw})=\frac{A}{\mathrm{RCjw}+1}=\frac{A}{1+\mathrm{j} \frac{\mathrm{w}}{w h}}=\frac{A}{1+\mathrm{j} \frac{\mathrm{f}}{f h}}$ where $\mathrm{f}=\frac{1}{2 \pi R C}$ and $\mathrm{f}=\frac{w}{2 \pi}$

Continued

At very low frequency,f<<fh, $|\mathrm{H}(\mathrm{jw})| \approx \mathrm{A}$ (pass band)

- At $\mathrm{f}=\mathrm{fh},|\mathrm{H}(\mathrm{jw})|=\frac{A}{\sqrt{2}}=0.707 \mathrm{~A}(-3 \mathrm{db}$ down $)$
- At $\mathrm{f} \gg \mathrm{fh},|\mathrm{H}(\mathrm{jw})| \ll \mathrm{A} \approx \mathrm{o}$ (gain decreases at a rate of $-20 \mathrm{~dB} /$ decade-stop band)
- $\mathrm{A}(\mathrm{s})=\frac{1}{s+1}=\frac{1}{j w+1}=\frac{1}{\sqrt{1+w 2}} ; \mathrm{A}(\mathrm{dB})=20 \log 1-20 \log \sqrt{1+w 2} ;$ when $\mathrm{w}=10-2 \log \sqrt{2}=-3 \mathrm{~dB}$

LOW PASS FILTER DESIGN:
1.Choose the value of high cut off frequency, fh
2. Select the value of capacitor C such that its value $\leq 1 \mu \mathrm{~F}$
3. When the values f and C are known, the value of R can be calculated by using $\mathrm{fh}=\frac{1}{2 \pi R C}$
4.Finally select the values of Ri and Rf depending on the desired pass band gain by using $A=1+(R f / R 1)$
1.Design a first order LPF at a cut-off frequency of 2 KHz with a gain of 2 .

Ans:fh $=2 \mathrm{KHz}, \mathrm{A}=2$
Let $\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{f}=\frac{1}{2 \pi R C}, \mathrm{R}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi * 2 * 10^{3} * 0.01 * 10^{-6}}=7.95 \mathrm{k}^{\prime} \Omega$
$\mathrm{A}=1+(\mathrm{Rf} / \mathrm{RI})=2 ; \mathrm{Rf}=\mathrm{Ru}=10 \mathrm{k}^{\prime} \Omega$

SECOND ORDER LOWPASS FILTER(SALLEN-KEY)

- For $2^{\text {nd }}$ order, -2 olog $\sqrt{1+\left(\frac{w}{w 0}\right)^{4}}=-20 \log \left(\frac{w}{w 0}\right)^{2}=-40 \mathrm{ODB} / \mathrm{dec}$
- Consists of 2 RC pairs and

Has a roll off rate of $-40 \mathrm{~dB} /$ decade
Due to virtual ground concept Vout $\approx \mathrm{Vb}$
Apply KCL to node A

$$
\begin{aligned}
& V i Y 1=V a\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}\right)-V o Y 3-V b Y 2 \\
& V_{1} Y_{1}=\mathrm{Va}_{1}\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}\right)-\mathrm{VoY}_{3}-\mathrm{Vo}_{0} \frac{\mathrm{Y}_{2}}{A 0}\left(\text { as } \mathrm{Vb}^{*} \mathrm{Ao}_{0}=\mathrm{Vo}_{0}\right)-\cdots--1
\end{aligned}
$$

Apply KCL to node B
$V a \mathrm{Y}_{2}=\mathrm{Vb}\left(\mathrm{Y}_{2}+\mathrm{Y}_{4}\right)=\frac{V 0}{A 0}\left(\mathrm{Y}_{2}+\mathrm{Y}_{4}\right)$
$\mathrm{Va}=\mathrm{Vo} \frac{Y 2+Y 4}{A 0 Y 2}-\cdots---2$
Substitute 2 in 1 Gen:equation
$\frac{V o}{V i}=\frac{A o Y 1 Y 2}{Y 1 Y 2+Y 4(Y 1+Y 2+Y 3)+Y 2 Y 3(1-A o)}$

To make a $\mathrm{LPF}, \mathrm{Y}_{1}=\mathrm{Y}_{2}=1 / \mathrm{R}, \mathrm{Y}_{3}=\mathrm{Y}_{4}=\mathrm{sC}$

Continued

From $3, \mathrm{H}(\mathrm{s})=\frac{\mathrm{Ao}}{(s C R)^{2}+s C R(3-A o)+1}$

- $\mathrm{H}(\mathrm{o})=\mathrm{Ao}$ and $\mathrm{H}(\infty)=\mathrm{o}$ Thus LPF is clear
- TF of $2^{\text {nd }}$ order LPF,H(s)=$\frac{A o w h^{2}}{s^{2}+\propto w h s+w h^{2}} \cdots \cdots-\cdots$ where $\mathrm{Ao}=$ gain, wh=upper cut off frequency, $\propto=$ damping coefficient
- Compare 4 and $5 \frac{A o w h^{2}}{s^{2}+\propto w h s+w h^{2}}=\frac{A o}{(S C R)^{2}+S C R(3-A o)+1}$
- $w h=\frac{1}{R C} \quad \propto=3$-Ao
- Value of the damping coefficient can be determined by the value of Ao
- Put $\mathrm{s}=\mathrm{jw}$ in 5
- Thus normalized frequency $\mathrm{s}=\mathrm{j}\left(\frac{w}{w h}\right)$
- In $\mathrm{dB},|\mathrm{H}(\mathrm{jw})|=20 \log \frac{A o}{\sqrt{\left(1-\frac{w^{2}}{w h^{2}}\right)^{2}+\left(\alpha \frac{w}{w h}\right)^{\wedge 2}}}$
- Heavily damped filter, $\propto>1.7$,response is stable
- When \propto decreases, response exhibits overshoot and ripple at early stage
- If \propto is reduced too much,filter becomes oscillatory
- For $\propto=1.414$,flattest pass band occurs-BUTTERWORTH FILTER Eg:Audio filters
- For $\propto=1.06$-Chebyshev filters and $\propto=1.73$-Bessel filters
|H(jw) in $\mathrm{dB}=20 \log \frac{A O}{\sqrt{1+\left(\frac{w}{w h}\right)^{4}}}$
- For nth order, $|\mathrm{H}(\mathrm{jw})|=\frac{1}{\sqrt{1+\left(\frac{w}{w h}\right)^{2 n}}}$

\mathbf{n} (order)	Normalized Denominator Polynomials in Factored Form
1	$(1+s)$
2	$\left(1+1.414 s+s^{2}\right)$
3	$(1+s)\left(1+s+s^{2}\right)$
4	$\left(1+0.765 s+s^{2}\right)\left(1+1.848 s+s^{2}\right)$
5	$(1+s)\left(1+0.618 s+s^{2}\right)\left(1+1.618 s+s^{2}\right)$
6	$\left(1+0.518 s+s^{2}\right)\left(1+1.414 s+s^{2}\right)\left(1+1.932 s+s^{2}\right)$
7	$(1+s)\left(1+0.445 s+s^{2}\right)\left(1+1.247 s+s^{2}\right)\left(1+1.802 s+s^{2}\right)$
8	$\left(1+0.390 s+s^{2}\right)\left(1+1.111 s+s^{2}\right)\left(1+1.663 s+s^{2}\right)\left(1+1.962 s+s^{2}\right)$
9	$(1+s)\left(1+0.347 s+s^{2}\right)\left(1+s+s^{2}\right)\left(1+1.532 s+s^{2}\right)\left(1+1.879 s+s^{2}\right)$
10	$\left(1+0.313 s+s^{2}\right)\left(1+0.908 s+s^{2}\right)\left(1+1.414 s+s^{2}\right)\left(1+1.782 s+s^{2}\right)\left(1+1.975 s+s^{2}\right)$

Design a second order Butterworth LPF having upper cut off frequency 1 KHz
$\mathrm{fh}=\frac{1}{2 * \pi * R C} ; \alpha=3-\mathrm{Ao}$
Let $\mathrm{C}=0.1 \mu \mathrm{~F} \quad \mathrm{R}=\frac{1}{2 * \pi * f h C}=\frac{1}{2 * \pi * 1000 * 0.1 * 10^{-6}}=1.6 \mathrm{~K}^{\prime} \Omega$
As butterworth filter for order, $\mathrm{n}=2$ then $\propto=1.414$
Ao=3- $\propto=3-1.414=1.586$
$\mathrm{TF}=\frac{1.586}{s^{2}+1.414 s+1}$ (denominator from the table)
$\mathrm{Ao}=1+\frac{R f}{R i}=1.586$
So $\mathrm{Rf}=0.586 \mathrm{Ri}$ Let $\mathrm{Rf}=5.86 \mathrm{~K}^{\prime} \Omega$ and $\mathrm{Ri}=10 \mathrm{~K}^{\prime} \Omega$
Draw the circuit and mark the component values

- Design a fourth order butterworth LPF having upper cut off frequency 1 kHz
$\mathrm{fh}=\frac{1}{2 * \pi * R C} ; \propto=3-\mathrm{Ao}$
Let $\mathrm{C}=0.1 \mu \mathrm{~F} \quad \mathrm{R}=\frac{1}{2 * \pi * f h c}=\frac{1}{2 * \pi * 1000 * 0.1 * 10^{-6}}=1.6 \mathrm{~K}^{\prime} \Omega$
$\propto_{1}=0.765, \propto_{2}=1.848$ two damping factors
Aol=3- $\propto_{1=3-0.765=2.235}$
Ао2 $=3-\alpha_{2}=3-1.848=1.152$
$\mathrm{TF}=\frac{2.235}{s^{2}+0.765 s+1} \cdot \frac{1.152}{s^{2}+1.848 s+1}$
Ao1 $=1+\frac{R f}{R i}=2.235$ so $\mathrm{Rf}=1.235 \mathrm{Ri}$ Let $\mathrm{Rf}=12.35 \mathrm{~K}^{\prime} \Omega$ and $\mathrm{Ri}=10 \mathrm{~K}^{\prime} \Omega$
Ao2 $=1+\frac{R f}{R i}=1.152$ so $\mathrm{Rf}=0.152 \mathrm{Ri}$ Let $\mathrm{Rf}=15.2 \mathrm{~K} \mathrm{~S}^{\prime} \Omega$ and $\mathrm{Ri}=100 \mathrm{~K}{ }^{\prime} \Omega$
Draw two second order LPF cascaded with R and C for both
Ist stage $R f=12.35 \mathrm{~K}^{\prime} \Omega$ and $\mathrm{Ri}=10 \mathrm{~K}{ }^{\prime} \Omega$
$2^{\text {nd }}$ stage $R f=15.2 \mathrm{~K}{ }^{\prime} \Omega$ and $\mathrm{Ri}=100 \mathrm{~K}{ }^{\prime} \Omega$

HIGH PASS ACTIVE FILTER

Interchanging R and C in LPF

- $\frac{V o}{V i}=\frac{A o Y 1 Y 2}{Y 1 Y 2+Y 4(Y 1+Y 2+Y 3)+Y 2 Y 3(1-A o)}$

Put $\mathrm{Y} 1=\mathrm{Y}_{2}=\mathrm{sC}, \mathrm{Y}_{3}=\mathrm{Y}_{4}=1 / \mathrm{R}$
$\mathrm{H}(\mathrm{s})=\frac{A o s^{2}}{s^{2}+(3-A o) w l s+w l^{2}}$
where $\mathrm{wl}=\frac{1}{R C}$
$\mathrm{H}(\mathrm{o})=\mathrm{o}$ and $\mathrm{H}(\infty)=$ Ao Thus HPF is clear
$|\mathrm{H}(\mathrm{jw})|=\frac{A o}{\sqrt{1+\left(\frac{f l}{f}\right)^{4}}}$

For nth order, $|\mathrm{H}(\mathrm{jw})|=\frac{1}{\sqrt{1+\left(\frac{f l}{f}\right)^{2 n}}}$

- Design a second order Butterworth HPF having lower cut off frequency 1 KHz
$\mathrm{fl}=\frac{1}{2 * \pi * R C} ; \alpha=3$-Ao
Let $\mathrm{C}=0.1 \mu \mathrm{~F} \quad \mathrm{R}=\frac{1}{2 * \pi * f h c}=\frac{1}{2 * \pi * 1000 * 0.1 * 10^{-6}}=1.6 \mathrm{~K} \Omega$
As butterworth filter for order , $\mathrm{n}=2$ then $\propto=1.414$
$\mathrm{Ao}=3-\alpha=3-1.414=1.586$
$\mathrm{TF}=\frac{1.586}{s^{2}+1.414 s+1}$ (denominator from the table)
$\mathrm{Ao}=1+\frac{R f}{R i}=1.586$
So $R f=0.586 R i$ Let $R f=5.86 \mathrm{~K}^{\prime} \Omega$ and $\mathrm{Ri}=10 \mathrm{~K}^{\prime} \Omega$

BAND PASS FILTER

Depending on figure of merit and quality factor, there are two types :Narrow $(\mathrm{Q}>10)$ and Wide BPF $(\mathrm{Q}<10)$

- $\mathrm{Q}=\frac{f o}{B W}=\frac{f o}{f h-f l}$ and fo $=\sqrt{f h f l}$ where fo-central frequency
- NARROW BANDPASS FILTER:
> Important parameters are upper and lower cut off frequencies,Band width central fremiency oain Ao and selectivity Q

Fig.3.39 Band pass configuration

Fig. 3.40 Second order band pass filler

- $\mathrm{Y}_{1}=\mathrm{Gl}_{1} ; \mathrm{Y}_{2}=\mathrm{sC} 2=\mathrm{Y}_{3}=\mathrm{sC} 3 ; \mathrm{Y}_{4}=\mathrm{G}_{4} ; \mathrm{Y}_{5}=\mathrm{G} 5-----\mathrm{A}$
- Apply KCL at node A,
(Vi-Va) Y =(Va-o) $\mathrm{Y}_{4}+(\mathrm{Va}-\mathrm{Vb}) \mathrm{Y} 2+(\mathrm{Va}-\mathrm{Vo}) \mathrm{Y}_{3}$
$\mathrm{Vb}=\mathrm{o}$ (virtual ground)
ViY1 $+\mathrm{VoY} 3=\mathrm{Va}\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}+\mathrm{Y}_{4}\right)--------1$

Continued
Apply KCL at node B
$(\sqrt{\mathrm{a}-\mathrm{Vb}}) \mathrm{Y}_{2}=(\mathrm{Vb}-\mathrm{Vo}) \mathrm{Y}_{5} \quad \mathrm{Vb}=0$
$\mathrm{VaY}_{2}=-\mathrm{VoY}_{5} \quad \mathrm{Va}=-\mathrm{Vo} \frac{Y 5}{Y 2}$

Put Va in eqn 1
$\mathrm{ViY} 1+\mathrm{VoY}_{3}=-\mathrm{Vo} \frac{Y 5}{Y 2}\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}+\mathrm{Y}_{4}\right)$
$\mathrm{ViY1}=-\mathrm{Vo}\left[\frac{Y 5 Y 1}{Y 2}+\frac{Y 5 Y 2}{Y 2}+\frac{Y 5 Y 3}{Y 2}+\frac{Y 5 Y 4}{Y 2}+\frac{Y 3 Y 2}{Y 2}\right]$
$\mathrm{ViY1}=-\mathrm{Vo}\left[\frac{Y 5 Y 1}{Y 2}+\frac{Y 5 Y 2}{Y 2}+\frac{Y 5 Y 3}{Y 2}+\frac{Y 5 Y 4}{Y 2}+\frac{Y 3 Y 2}{Y 2}\right]$
$\mathrm{ViY1}=-\mathrm{Vo}\left[\frac{Y 5 Y 1+Y 5 Y 2+Y 5 Y 3+Y 5 Y 4+Y 3 Y 2}{Y 2}\right]$
$\mathrm{Vo} / \mathrm{Vi}=\frac{Y 1 Y 2}{Y 5 Y 1+Y 5 Y 2+Y 5 Y 3+Y 5 Y 4+Y 3 Y 2}$

Acc to eqn A
$\mathrm{Vo} / \mathrm{Vi}=\frac{-s G 1 C 2}{s^{2} C 2 C 3+G 1 G 5+s C 2 G 5+s C 3 G 5+G 4 G 5}$
$\mathrm{Vo} / \mathrm{Vi}=\frac{-G 1}{s C 3+\frac{[C 2+C 3] G 5}{C 2}+\frac{G 5[G 1+G 4]}{s C 2}} \cdots \cdots-\cdots$
TF is equivalent to parallel RLC circuit
$\mathrm{Vo} / \mathrm{Vi}=\frac{-G 1}{s C+\frac{1}{s L}+G}-\cdots-----5$

Continued

Compare 4 and 5,
G'=G1
$\mathrm{L}=\frac{C 2}{G 5(G 1+G 4)}$
$\mathrm{C}=\mathrm{C} 3$
Resonance frequency for an RLC circuit, $w o^{2}=\frac{1}{L C}$
$w o^{2}=\frac{G 5(G 1+G 4)}{C 2 C 3}-\cdots--6$
At resonance,sL=1/sC
Then eqn 5 is Vo/Vi at w=wo, $\quad \frac{-G^{\prime}}{G}=-\frac{G 1}{G 5(C 2+C 3) / C 2}=\frac{-\left(\frac{G 1}{G 5}\right) C 2}{C 2+C 3}$
$\mathrm{G}_{5}=1 / \mathrm{R}_{5} ; \mathrm{Gr}^{1}=1 / \mathrm{Rr}_{1}=\frac{-\left(\mathrm{R}_{5} / \mathrm{Rr}_{1}\right) \mathrm{C}_{2}}{c 2+C 3}$
Q factor at resonance $\mathrm{Qo}=\frac{w o L}{R}=w o R C=\frac{w o C}{G}=\frac{w o C 2 C 3}{G 5(C 2+C 3)}-\cdots-\cdots-----7$
$\mathrm{BW}=\mathrm{fh}-\mathrm{fl}=\frac{f 0}{Q 0}=\frac{w 0}{2 \pi Q 0}=\frac{1}{2 \pi R C}=\frac{G}{2 \pi C}$
$\mathrm{BW}=\frac{G 5(C 2+C 3)}{2 \pi C 2 C 3}$
$\mathrm{fo}=\sqrt{f h f l}$

Continued.

At resonant frequency $C_{2}=C_{3}=C$
$|\mathrm{Vo} / \mathrm{Vi}|=\frac{\left(-\frac{R 5}{R 1}\right) C}{C+C}=\frac{(-R 5)}{2 R 1}=-A o \cdots$

- $w o^{2}=\frac{G 5(G 1+G 4)}{C^{2}}-\cdots----10$
- $\mathrm{BW}=\frac{G 5(C 2+C 3)}{2 \pi C 2 C 3}=\frac{\mathrm{G} 5 * 2 \mathrm{C}}{2 \pi C^{2}}=\frac{G 5}{\pi C}=\frac{1}{\pi R 5 C}-\cdots \cdots-\cdots-\cdots$ damping factor, $\alpha=\frac{1}{Q}$
DESIGN OF THE FILTER:
Step 1:Choose

$$
\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}
$$

Step 2:Resistors Calculation: $\mathrm{R} 1=\frac{Q}{2 \pi f c * C * A f}$

$$
\begin{aligned}
& \mathrm{R}_{2}=\frac{Q}{2 \pi f c *\left(2 Q^{2}-A f\right)} \\
& \mathrm{R}_{3}=\frac{Q}{\pi f c * C}
\end{aligned}
$$

Step 3:Gain at fc:

$$
\mathrm{Af}=\frac{R 3}{2 R 1} \text { Condn }: \mathrm{Af}<2 Q^{2}
$$

Step 4:For a multiple feedback filter, center frequency ,fc-new frequency fc' Without changing gain or BW.Repalce R2 by Rz'

$$
\mathrm{R}^{\prime}=\left(\frac{f c}{f c^{\prime}}\right)^{2} \mathrm{R} 2
$$

Problems:

1. Design a narrow band pass filter $\mathrm{fc}=3 \mathrm{KHz}, \mathrm{Q}=30, \mathrm{Af}=20$

Ans: Assume $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}=0.1 \mu \mathrm{~F}$
$\mathrm{R} 1=\frac{Q}{2 \pi f c * C * A f}=\frac{30}{2 \pi * 3 * 10^{3} * 0.1 * 10^{-6} * 20}=796^{\prime} \Omega$
$\mathrm{R} 2=\frac{Q}{2 \pi f c *\left(2 Q^{2}-A f\right)}=\frac{30}{2 \pi * 3 * 10^{3} *\left(2 * 30^{2}-20\right)}=9^{\prime} \Omega$
$\mathrm{R}_{3}=\frac{Q}{\pi f c * C}=\frac{Q}{\pi * 3 * 10^{3} * 0.1 * 10^{-6}}=32^{\prime} \Omega$
$\mathrm{Af}=\frac{R 3}{2 R 1}$
WIDE BAND PASS FILTER:

Circuit Diagram
Wide Band Pass Filter

Continued

Cascading HPF and LPF

- If HPF and LPF are of first order, BPF will have a roll off rate-2odB/dec
- $|\mathrm{Vo} / \mathrm{Vi}|=\frac{\operatorname{Ao}\left(\frac{f}{f l}\right)}{\sqrt{\left[1+\left(\frac{f}{f l}\right)^{2}\right]\left[1+\left(\frac{f}{f h}\right)^{2}\right.}}$ where $\mathrm{fl}=\frac{1}{2 \pi R C}$ and $\mathrm{fh}=\frac{1}{2 \pi R^{\prime} C^{\prime}}$

2. Design a wide band pass filter having $\mathrm{fl}=400 \mathrm{~Hz}, \mathrm{fh}=2 \mathrm{KHz}$ and pass band gain of 4.Find value of Q
Ans:Ao=1+Rf/Ri=2 so Rf=Ri=10K Ω
For $\mathrm{LPF}, \mathrm{fh}=2 \mathrm{KHz}=\frac{1}{2 \pi R^{\prime} C^{\prime}}$ Let $\mathrm{C}^{\prime}=0.01 \mu \mathrm{~F}, \mathrm{R}^{\prime}=7.9 \mathrm{~K}^{\prime} \Omega \quad$ Gain $=2$
For HPF, $\mathrm{fl}=400 \mathrm{~Hz}=\frac{1}{2 \pi R C}$ Let $\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=39.8 \mathrm{~K}^{\prime} \Omega \quad$ Gain $=2$
$\mathrm{fo}=\sqrt{f h f l}=\sqrt{2000 * 400}=894.4$
$\mathrm{Q}=\frac{f o}{B W}=\frac{f o}{f h-f l}=\frac{894.4}{1800}=0.56$
For wide band pass filter, Q is very low, $\mathrm{Q}<10$

BAND REJECT FLLTER

Band stop /band elimination can be narrow/wide band

- Narrow band reject filter is called Notch filter(rejection of single frequency)
- Obtained by subtracting band pass filter o/p from its input

- $\mathrm{fo}=\frac{1}{2 \pi R C}$
- Design a 50 Hz active notch filter

Ans:fo $=\frac{1}{2 \pi R C}=50 \mathrm{~Hz}$ Let $\mathrm{C}=0.1 \mu \mathrm{~F} \mathrm{R}=31.8 \mathrm{~K}{ }^{\prime} \Omega$
For $\mathrm{R} / 2$ take two resistors of 31.8 K ' Ω in parallel and for2C take two $0.1 \mu \mathrm{~F}$ capacitors in parallel to make twin -T notch filter as shown above

Continued.

Wide band reject filter ($\mathrm{Q}<10$) made using a LPF,HPF and summer

- fl>fh and pass band gain of LPF and HPF should be same

3.Design a wide band reject filter having $\mathrm{fh}=400 \mathrm{~Hz}$ and $\mathrm{fl}=2 \mathrm{KHzhaving}$ pass band gain of 2
For $\mathrm{HPF}, \mathrm{fl}=2 \mathrm{KHz}=\frac{1}{2 \pi R 2 C 2}$ Let $C 2=0.1 \mu \mathrm{~F}, \mathrm{R} 2=795^{\prime} \Omega$
For LPF,fh $=400 \mathrm{~Hz}=\frac{1}{2 \pi R 1 C 1}$ Let $C 1=0.1 \mu \mathrm{~F}, \mathrm{R}=3978^{\prime} \Omega$
$\mathrm{Ao}=1+\mathrm{Rf} / \mathrm{Ri}=2 \mathrm{Rf}=\mathrm{Ri}=10 \mathrm{~K}^{\prime} \Omega$

Questions:

1. Design a second order Butterworth Low Pass Filter with $\mathrm{fH}=2 \mathrm{KHz}$ 2Design a first order wide bandpass filter with $\mathrm{fH}=2 \mathrm{KHz}$ and $\mathrm{fL}=500 \mathrm{~Hz}$
2. Design a Notch filter to eliminate power supply hum (50 Hz).
3. Design a Schmitt Trigger with hysteresis width, $\mathrm{Vh}=2 \mathrm{~V}$.

Assume Vsat $= \pm 14 \mathrm{~V}$
5. Design a circuit to generate 1 KHz triangular wave with ${ }_{5} \mathrm{~V}$ peak.
6.Design a first order low pass filter at a cut-off frequency of 2 kHz with a pass band gain of 3
7. Derive the design equations for a second order Butterworth active low pass filter
8. What is a zero crossing detector?
9. Derive the equation for frequency of oscillation for a square-triangular waveform generator.
10. Derive the equation for the transfer function of a first order wide Band Pass filter.

