IMAGE RESTORATION

Outline

- A model of the image degradation / restoration process
- Noise models
- Restoration in the presence of noise only - spatial filtering
- Inverse filtering \& Wiener filtering
- Constrained Least square filtering
- Geometric mean filter
- Geometric and spatial transformation

What is Image Restoration?

-Image restoration is to restore a degraded image back to the original image
-Image enhancement is to manipulate the image so that it is suitable for a specific application.

Image Restoration

Image restoration attempts to restore images that have been degraded

- Identify the degradation process and attempt to reverse it
- Similar to image enhancement, but more objective

A model of the image degradation/restoration process

$g(x, y)=f(x, y) \star h(x, y)+\eta(x, y)-$ Spatial domain
$\mathrm{G}(\mathrm{u}, \mathrm{v})=\mathrm{F}(\mathrm{u}, \mathrm{v}) \mathrm{H}(\mathrm{u}, \mathrm{v})+\mathrm{N}(\mathrm{u}, \mathrm{v})$ - Frequency doma

A model of the image degradation/ restoration process

-Where,

$f(x, y)$ - input image
$f^{\wedge}(x, y)$ - estimated original image
$g(x, y)$ - degraded image
$h(x, y)$ - degradation function $\eta(x, y)$ - additive noise term

Noise models

- Sources of noise
- Image acquisition (digitization) - Imaging sensors can be affected by ambient conditions
- Image transmission - Interference can be added to an image during transmission
- Spatial properties of noise
- Statistical behavior of the gray-level values of pixels
- Noise parameters, correlation with the image
- Frequency properties of noise
- Fourier spectrum
- Ex. white noise (a constant Fourier spectrum)

Gaussian noise

- Mathematical tractability in spatial and frequency domains
- Used frequently in practice
- Electronic circuit noise and sensor noise

$$
p(z)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(z-\mu)^{2} / 2 \sigma^{2}} \underbrace{\text { mean }}_{\text {Intensity }}
$$

Note: $\quad \int_{-\infty}^{\infty} p(z) d z=1$

Gaussian noise PDF

Rayleigh noise

$$
p(z)= \begin{cases}\frac{2}{b}(z-a) e^{-(z-a)^{2} / b} & \text { for } z \geq a \\ 0 & \text { for } z<a\end{cases}
$$

-The mean and variance of this density are given by

$$
\mu=a+\sqrt{\pi b / 4} \text { and } \sigma^{2}=\frac{b(4-\pi)}{4}
$$

-a and b can be obtained through mean and variance

Rayleigh noise PDF

.. : . \because нй

Erlang (Gamma) noise

$$
p(z)=\left\{\begin{array}{lr}
\frac{a^{b} z^{b-1}}{(b-1)!} e^{-a z} & \text { for } z \geq 0 \\
0 & \text { for } z<0
\end{array}\right.
$$

- The mean and variance of this density are given by

$$
\mu=b / a \text { and } \sigma^{2}=\frac{b}{a^{2}}
$$

- a and b can be obtained through mean and variance

Gamma noise (PDF)

Exponential noise

$$
p(z)= \begin{cases}a e^{-a z} & \text { for } z \geq 0 \\ 0 & \text { for } z<0\end{cases}
$$

The mean and variance of this density are given by

$$
\mu=1 / a \text { and } \sigma^{2}=\frac{1}{a^{2}}
$$

Exponential Noise PDF

Special case of Erlang PDF with $\mathrm{b}=1$

Uniform noise

- Less practical, used for random number generator

$$
p(z)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq z \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Mean: $\mu=\frac{a+b}{2}$
Variance: $\quad \sigma^{2}=\frac{(b-a)^{2}}{12}$

Uniform PDF

Impulse (salt-and-pepper) nosie

- Quick transients, such as faulty switching during imaging

$$
p(z)= \begin{cases}P_{a} & \text { for } z=a \\ P_{b} & \text { for } z=b \\ 0 & \text { otherwise }\end{cases}
$$

If either P_{a} or P_{b} is zero, it is calledunipolar. Otherwise, it is called bipolar.

Impulse (salt-and-pepper) nosie PDF

Image Degradation with Additive Noise

$$
g(x, y)=f(x, y)+\eta(x, y)
$$

Original image

Histogram

Rayleigh

Gamma

A model of the image degradation / restoration process

$$
\begin{aligned}
& g(x, y)=f(x, y) \star h(x, y)+\eta(x, y) \\
& G(u, v)=F(u, v) H(u, v)+N(u, v)
\end{aligned}
$$

Linear, position-invariant degradation

Properties of the degradation function H

- Linear system

$$
-\mathrm{H}\left[\mathrm{af}_{1}(\mathrm{x}, \mathrm{y})+\mathrm{bf} \mathrm{f}_{2}(\mathrm{x}, \mathrm{y})\right]=\mathrm{aH}\left[\mathrm{f}_{1}(\mathrm{x}, \mathrm{y})\right]+\mathrm{bH}\left[\mathrm{f}_{2}(\mathrm{x}, \mathrm{y})\right]
$$

- Position(space)-invariant system
$-H[f(x, y)]=g(x, y)$ is position invariant if

$$
H[f(x-\alpha, y-\beta)]=g(x-\alpha, y-\beta)
$$

Estimation of Degradation Function Degradation model:

$$
\begin{aligned}
& \quad \text { or } \quad g(x, y)=f(x, y) * h(x, y)+\eta(x, y) \\
& \quad G(u, v)=F(u, v) H(u, v)+N(u, v)
\end{aligned}
$$

If we know exactly $h(x, y)$, regardless of noise, we can do deconvolution to get $f(x, y)$ back from $g(x, y)$.

Methods:

1. Estimation by Image Observation
2. Estimation by Experiment
3. Estimation by Modeling

Estimatiomby/lmage Observation

Original image (unknown)
Degraded image

Estimatiomby Experiment

Used when we have the same equipment set up

Input impulse image

$A \delta(x, y)$

DFT $\{A \delta(x, y)\}=A$

Response image from the system

$g(x, y)$

$G(u, v)$

$$
H(u, v)=\frac{G(u, v)}{A}
$$

Estimatiomby/Modeling

Used when we know physical mechanism underlying the image formation process that can be expressed mathematically.

Severe turbulence

Example:

Atmospheric Turbulence model

$$
H(u, v)=e^{-k\left(u^{2}+v^{2}\right)^{5 / 6}}
$$

Estimatiomby/Modeling: MotiomBlurring

Assume that camera velocity is

$$
\left(x_{0}(t), y_{0}(t)\right)
$$

The blurred image is obtained by

$$
g(x, y)=\int_{0}^{T} f\left(x+x_{0}(t), y+y_{0}(t)\right) d t
$$

where T = exposure time.

$$
\begin{aligned}
G(u, v) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) e^{-j 2 \pi(u x+v y)} d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\int_{0}^{T} f\left(x+x_{0}(t), y+y_{0}(t)\right) d t\right] e^{-j 2 \pi(u x+v y)} d x d y \\
& =\int_{0}^{T}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x+x_{0}(t), y+y_{0}(t)\right) e^{-j 2 \pi(u x+v y)} d x d y\right] d t
\end{aligned}
$$

Estimatiomby/Modeling: MotiomBlurring,(cont:)

$$
\begin{aligned}
G(u, v) & =\int_{0}^{T}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x+x_{0}(t), y+y_{0}(t)\right) e^{-j 2 \pi(u x+v y)} d x d y\right] d t \\
& =\int_{0}^{T}\left[F(u, v) e^{-j 2 \pi\left(u x_{0}(t)+v y_{0}(t)\right)}\right] d t \\
& =F(u, v) \int_{0}^{T} e^{-j 2 \pi\left(u x_{0}(t)+v y_{0}(t)\right)} d t
\end{aligned}
$$

Then we get, the motion blurring transfer function:

$$
H(u, v)=\int_{0}^{T} e^{-j 2 \pi\left(u x_{0}(t)+v y_{0}(t)\right)} d t
$$

For constant motion

$$
\left(x_{0}(t), y_{0}(t)\right)=(a t, b t)
$$

$$
H(u, v)=\int_{0}^{T} e^{-j 2 \pi(u a+v b)} d t=\frac{T}{\pi(u a+v b)} \sin (\pi(u a+v b)) e^{-j \pi(u a+v b)}
$$

MotionBlurring Example

For constant motion

$$
H(u, v)=\frac{T}{\pi(u a+v b)} \sin (\pi(u a+v b)) e^{-j \pi(u a+v b)}
$$

Inverse Filtering

From degradation model:

$$
G(u, v)=F(u, v) H(u, v)+N(u, v)
$$

after we obtain $H(u, v)$, we can estimate $F(u, v)$ by the inverse filter:

$$
\begin{aligned}
& \hat{F}(u, v)=\frac{G(u, v)}{H(u, v)}=F(u, v)+\frac{N(u, v)}{H(u, v)} \\
& \text { s enhanced }
\end{aligned}
$$

Noise is enhanced when $H(u, v)$ is small.

> To avoid the side effect of enhancing noise, we can apply this formulation to freq. component (u, v) with in a radius D_{0} from the center of $H(u, v)$.

In practical, the inverse filter is not popularly used.

Inverse Filtering Contd...

- Divide equation one by $\mathrm{H}(\mathrm{u}, \mathrm{v})$
- $\frac{G(u, v)}{H(u, v)}=\frac{F(u, v) H(u, v)+N(u, v)}{H(u, v)}$
- We know that $\hat{F}(\mathrm{u}, \mathrm{v})=\frac{G(u, v)}{H(u, v)}$
- Substitute $\hat{F}(u, v)$ in eqn (2)
- $\hat{F}(\mathrm{u}, \mathrm{v})=\mathrm{F}(\mathrm{u}, \mathrm{v})+\frac{N(u, v)}{H(u, v)}$
- If noise is zero the estimated image $\hat{F}(\mathrm{u}, \mathrm{v})$ is equal to original image, but noise will not be properly removed in inverse filtering.

Inverse Filtering

- Limitations:

1. Even if the degradation function is known the undegraded image cannot be recovered exactly because $\mathrm{N}(\mathrm{u}, \mathrm{v})$ is the random function which is not known.
2. If the degradation function has ' 0 ' or small value the ratio $\frac{N(u, v)}{H(u, v)}$ easily dominates the estimate $\mathrm{F}(\mathrm{u}, \mathrm{v}$,) one approach to get ride of 0 (or) small value problem to limits the filter frequency to the value near the origin.

WIENER FILTERING

- Inverse filtering has no explicit provision for handling noise but the wiener filtering it incorporates both degradation function, statistical characteristics of noise taken into the restoration process.

$$
\cdot \mathrm{e}^{2}=\mathrm{E}\left[(\mathrm{f}-\hat{f})^{2}\right]
$$

- Objective of the wiener filter is to find the estimate of uncorrupted image f, such that the mean square error is minimize the wiener filter is optimum filter
- Diagram

Wiener Filtering Contd...

- The error between the input signal and the estimated signal is given by the mean square error.
$-\mathrm{e}(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{x}, \mathrm{y})-\hat{f}(\mathrm{x}, \mathrm{y})$
$-\mathrm{E}\left[f(\mathrm{x}, \mathrm{y})-\hat{f}(\mathrm{x}, \mathrm{y})^{2}\right]=0$
- According to the principle of orthogonality the expected value of $f(x, y)-\hat{f}(x, y)$ totally orthogonal with $g(x, y)$ is zero.

$$
\begin{aligned}
& \mathrm{E}[\mathrm{f}(\mathrm{x}, \mathrm{y})-\hat{f}(\mathrm{x}, \mathrm{y}) \mathrm{g}(\mathrm{x}, \mathrm{y})]=0 \\
& \hat{f}(x, y)=g(x, y)^{*} r(x, y) \\
& \mathrm{E}\left[\mathrm{f}(\mathrm{x}, \mathrm{y})-\left(\mathrm{g}(\mathrm{x}, \mathrm{y})^{*} \mathrm{r}(\mathrm{x}, \mathrm{y}) \mathrm{g}(\mathrm{x}, \mathrm{y})\right]=0\right. \\
& E[f(x, y) g(x, y)]=E\left[\left(r(x, y)^{*} g(x, y)\right) g(x, y)\right] \\
& =\mathrm{E}\left\{\left[\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} r(x-k, y-l) g(k, l)\right] g(x, y)\right\}
\end{aligned}
$$

Wiener Filtering Contd...

- $S_{g g}(u, v)=H(u, v) H^{*}(u, v) . S_{f i f}(u, v)$

$$
=|H(u, v)|^{2} S_{f f}(u, v)
$$

$$
\mathrm{R}(\mathrm{u}, \mathrm{v})=\frac{S_{f g}(u, v)}{S_{g g}(u, v)}=\frac{H^{*}(u, v) \mathrm{S}_{\mathrm{f}}(\mathrm{u}, \mathrm{v})}{|H(u, v)|^{2} \mathrm{~S}_{\mathrm{fi}}(\mathrm{u}, \mathrm{v})+S \eta(u, v)}
$$

With presence of noise $\mathrm{S}_{\mathrm{gg}}(\mathrm{u}, \mathrm{v})=|\mathrm{H}(\mathrm{u}, \mathrm{v})|^{2} \mathrm{~S}_{\mathrm{ff}}(\mathrm{u}, \mathrm{v})+\mathrm{N}(\mathrm{u}, \mathrm{v})$

$$
\begin{gathered}
S \eta(u, v)=|\mathrm{N}(\mathrm{u}, \mathrm{v})|^{2} \\
\mathrm{R}(\mathrm{u}, \mathrm{v})=\frac{H^{*}(u, v) \mathrm{S}_{\mathrm{f}}(\mathrm{u}, \mathrm{v})}{\mid H(u, v)^{2} \mathrm{~S}_{\mathrm{ff}}(\mathrm{u}, \mathrm{v})+S \eta(u, v)}=\frac{\hat{F}(u, v)}{G(u, v)} \\
\hat{F}(u, v)=\mathrm{R}(\mathrm{u}, \mathrm{v}) \mathrm{G}(\mathrm{u}, \mathrm{v})
\end{gathered}
$$

Multiply and divide by $\mathrm{H}(\mathrm{u}, \mathrm{v})$ in $\mathrm{R}(\mathrm{u}, \mathrm{v})$ and sub in $\hat{F}(u, v)$

$$
\hat{F}(u, v)=\left[\frac{1}{H(u, v)} \frac{\left[H^{*}(u, v) H(u, v)\right] S_{f f}(u, v)}{\left.| | H(u, v)\right|^{2} S_{f f}(u, v)+S_{\eta}(u, v)}\right] G(u, v)
$$

Wiener Filtering Contd...

- $\hat{F}(u, v)==\left[\frac{1}{H(u, v)} \frac{|H(u, v)|^{2}}{|H(u, v)|^{2}+\frac{S \eta(u, v)}{S_{f f}(u, v)}}\right] \mathrm{G}(\mathrm{u}, \mathrm{v})$
- Wiener filter also know as minimum mean square filter or least mean square filter.
- Wiener filter does not have the same problem as the inverse filter unless both $H(u, v)$ and $S \eta(u, v)$ are zero for the same value of $u \& v$
- $\mathrm{H}(\mathrm{u}, \mathrm{v})=$ degradation function
- $H^{*}(u, v)=$ complex conjugate of $\mathrm{H}(\mathrm{u}, \mathrm{v})$
- $|\mathrm{H}(\mathrm{u}, \mathrm{v})| 2=\mathrm{H}^{*}(\mathrm{u}, \mathrm{v}) \mathrm{H}(\mathrm{u}, \mathrm{v})$
- $\operatorname{S\eta }(\mathrm{u}, \mathrm{v})=|\mathrm{N}(\mathrm{u}, \mathrm{v})| 2=$ Power spectrum of the noise
- $\operatorname{Sf}(\mathrm{u}, \mathrm{v})=|\mathrm{F}(\mathrm{u}, \mathrm{v})| 2=$ Power spectrum of an undegraded image.

Wiener Filtering

- Consideration:

1. When a noise is zero

$$
\begin{aligned}
& \eta(x, y)=0, S \eta(u, v)=0 \\
& \hat{F}(u, v)=\frac{G(u, v)}{H(u, v)}
\end{aligned}
$$

It reduces to inverse filtering
2. IF $H(u, v)=1$

$$
\begin{array}{r}
\hat{F}(u, v)=\left[\frac{\mathrm{G}(u, v) S_{f f}(u, v)}{S_{f f}(u, v)+S \eta(u, v)}\right] \\
\frac{G(u, v) \frac{S_{f f}(u, v)}{S \eta(u, v)}}{\frac{S_{f f}(u, v)}{S \eta(u, v)}+1}
\end{array}
$$

Wiener Filtering

- Signal to Noise ratio $\frac{S_{f f}(u, v)}{S_{\eta}(u, v)}$

3. Signal to noise ratio is greater than 1

$$
\frac{S_{f f}(u, v)}{S \eta(u, v)} \gg 1
$$

Then $\hat{F}(u, v)=\mathrm{G}(u, v)$--- Here the wiener filter act as a all pass filters. ADVANTAGES:

1. The wiener filter does not have zero value problem untill both $\mathrm{H}(\mathrm{u}, \mathrm{v})$ and $S \eta(u, v)$ is equal to zero.
2. The result obtained by wiener filter is more closer to the original image than inverse filter.

Approximation of Wiener Filter

Wiener Filter Formula:

$$
\hat{F}(u, v)=\left[\frac{1}{H(u, v)} \frac{|H(u, v)|^{2}}{\mid H(u,)^{2}+S_{\eta}(u, v) / S_{f}(u, v)}\right] G(u, v)
$$

Difficult to estimate
Approximated Formula:

$$
\hat{F}(u, v)=\left[\frac{1}{H(u, v)} \frac{|H(u, v)|^{2}}{|H(u, v)|^{2}+K}\right] G(u, v)
$$

In Practice, K is chosen manually to obtain the best visual result!

Constrained/Least/SquaresFFilter

Degradation model:
$g(x, y)=f(x, y) * h(x, y)+\eta(x, y)$
In matrix form,

$$
g=H f+\eta
$$

Aims to find the minimum of a criterion function

$$
C=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left[\nabla^{2} f(x, y)\right]^{2}
$$

Subject to the constraint

$$
\|\mathbf{g}-\mathbf{H} \hat{\mathbf{f}}\|^{2}=\|\boldsymbol{\eta}\|^{2} \quad \text { where } \quad\|\mathbf{w}\|^{2}=\mathbf{w}^{\top} \mathbf{w}
$$

Constrained least square filter is given by,

$$
\hat{F}(u, v)=\left[\frac{H^{*}(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}}\right] G(u, v)
$$

where

$$
P(u, v)=\text { Fourier transform of } p(x, y)=\quad\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

Constrained LeastISquares Filter: Example

Constrained least square filter

$$
\hat{F}(u, v)=\left[\frac{H^{*}(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}}\right] G(u, v)
$$

γ is adaptively adjusted to achieve the best result.

Results from the previous slide obtained from the constrained least square filter

Constrained Least Squares_Filter:Adjusting γ

Define

$$
\mathbf{r}=\mathbf{g}-\mathbf{H} \hat{\mathbf{f}} \quad \text { It can be shown that }
$$

$$
\phi(\gamma)=\mathbf{r}^{\top} \mathbf{r}=\|\mathbf{r}\|^{2}
$$

We want to adjust gamma so that

$$
\begin{equation*}
\|\mathbf{r}\|^{2}=\|\boldsymbol{n}\|^{2} \pm a \tag{1}
\end{equation*}
$$

1. Specify an initial value of γ where $\mathrm{a}=$ accuracy factor
2. Compute

$$
\|r\|^{2}
$$

3. Stop if is sausfied

Otherwise returnstep 2 after increasing γ if
1

or decreasing γ if

Use the new value of γ to recompute

$$
\begin{aligned}
& \|\mathbf{r}\|^{2}<\|\boldsymbol{n}\|^{2}-a \\
& \|\boldsymbol{r}\|^{2}>\|\boldsymbol{\eta}\|^{2}+a
\end{aligned}
$$

$$
\hat{F}(u, v)=\left[\frac{H^{*}(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}}\right] G(u, v)
$$

Constrained Least Squares:Filter:Adjusting $\gamma /$ (cont:)

$$
\left.\begin{array}{l}
\hat{F}(u, v)=\left[\frac{H^{*}(u, v)}{|H(u, v)|^{2}+\gamma \mid P(u, v)^{2}}\right] G(u, v) \\
R(u, v)=G(u, v)-H(u, v) \hat{F}(u, v) \\
\|r\|^{2}=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} r^{2}(x, y) \\
m_{\eta}=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \eta(x, y) \\
\sigma_{\eta}^{2}=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left[\eta(x, y)-m_{\eta}\right]^{2} \\
\|\eta\|^{2}=M N\left[\sigma_{\eta}^{2}-m_{\eta}\right]
\end{array}\right\} \text { For computing }
$$

Geometric Transformation

These transformations are often called rubber-sheet transformations: Printing an image on a rubber sheet and then stretch this sheet according to some predefine set of rules.

A geometric transformation consists of 2 basic operations:

1. A spatial transformation :

Define how pixels are to be rearranged in the spatially transformed image.
2. Gray level interpolation :

Assign gray level values to pixels in the spatially transformed image.

Geometric Transformatiom::Algorithm

1. Select coordinate (x, y) inf to berestored
2. Compute

$$
\begin{aligned}
x^{\prime} & =r(x, y) \\
y^{\prime} & =s(x, y)
\end{aligned}
$$

3. Go to pixel $\quad\left(x^{\prime}, y^{\prime}\right)$ in a distorted image g
4. get pixel value at $g\left(x^{\prime}, y^{\prime}\right)$ By gray level interpolatiolı
5. store that value in pixelf(x,y)

Spatial/Transformation

To map between pixel coordinate (x, y) of f and pixel coordinate ($x^{\prime} y^{\prime}$) of g

$$
x^{\prime}=r(x, y) \quad y^{\prime}=s(x, y)
$$

For a bilinear transformation mapping between a pair of Quadrilateral regions

$$
x^{\prime}=r(x, y)=c_{1} x+c_{2} y+c_{3} x y+c_{4}
$$

$$
y^{\prime}=s(x, y)=c_{5} x+c_{6} y+c_{7} x y+c_{8}
$$

To obtain $r(x, y)$ and $s(x, y)$, we need to know 4 pairs of coordinates
 and its corresponding $v(x, y)$ e called tiepoints.

Gray Level/Interpolation::Nearest/Neighbor

Since $\left(x^{\prime}, y^{\prime}\right)$ y not be at an integer coordinate, we need to Interpolate ule value of

$$
g\left(x^{\prime}, y^{\prime}\right)
$$

Example interpolation methods that can be used:

1. Nearest neighbor selection
2. Bilinear interpolation
3. Bicubic interpolation

