IMAGE RESTORATION

Outline

- A model of the image degradation / restoration process
- Noise models
- Restoration in the presence of noise only spatial filtering
- Inverse filtering & Wiener filtering
- Constrained Least square filtering
- Geometric mean filter
- Geometric and spatial transformation

What is Image Restoration?

 Image restoration is to restore a degraded image back to the original image

 Image enhancement is to manipulate the image so that it is suitable for a specific application.

Image Restoration

Image restoration attempts to restore images that have been degraded

- Identify the degradation process and attempt to reverse it
- Similar to image enhancement, but more objective

A model of the image degradation/restoration process

A model of the image degradation/ restoration process

•Where,

f(x,y) - input image f^(x,y) - estimated original image g(x,y) - degraded image h(x,y) - degradation function $\eta(x,y)$ - additive noise term

Noise models

- Sources of noise
 - Image acquisition (digitization) Imaging sensors can be affected by ambient conditions
 - Image transmission Interference can be added to an image during transmission
- Spatial properties of noise
 - Statistical behavior of the gray-level values of pixels
 - Noise parameters, correlation with the image
- Frequency properties of noise
 - Fourier spectrum

- Ex. white noise (a constant Fourier spectrum)

Gaussian noise

- Mathematical tractability in spatial and frequency domains
- Used frequently in practice
- Electronic circuit noise and sensor noise

Gaussian noise PDF

Rayleigh noise

$$p(z) = \begin{cases} \frac{2}{b}(z-a)e^{-(z-a)^2/b} & \text{for } z \ge a\\ 0 & \text{for } z < a \end{cases}$$

 The mean and variance of this density are given by

$$\mu = a + \sqrt{\pi b/4}$$
 and $\sigma^2 = \frac{b(4-\pi)}{4}$

-a and b can be obtained through mean and variance

Rayleigh noise PDF

. and the second ____ _____ -74 $a + \sqrt{\frac{b}{2}}$

Erlang (Gamma) noise

$$p(z) = \begin{cases} \frac{a^{b} z^{b-1}}{(b-1)!} e^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < 0 \end{cases}$$

- The mean and variance of this density are given by $\mu = b / a$ and $\sigma^2 = \frac{b}{a^2}$
- a and b can be obtained through mean and variance

Gamma noise (PDF)

والمراجع والمراجع والمراجع والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم • • • • -• • -. - and the second second second . • •

· · · · · ·

Exponential noise

$$p(z) = \begin{cases} ae^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < 0 \end{cases}$$

The mean and variance of this density are given by

$$\mu = 1/a$$
 and $\sigma^2 = \frac{1}{a^2}$

Exponential Noise PDF

Special case of Erlang PDF with b=1

Uniform noise

Less practical, used for random number generator

 $p(z) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq z \leq b\\ 0 & \text{otherwise} \end{cases}$

Mean:
$$\mu = \frac{a+b}{2}$$

Variance: $\sigma^2 = \frac{(b-a)^2}{12}$

Uniform PDF

Impulse (salt-and-pepper) nosie

 Quick transients, such as faulty switching during imaging

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

If either P_a or P_b is zero, it is called *unipolar*. Otherwise, it is called *bipolar*.

Impulse (salt-and-pepper) nosie PDF

Image Degradation with Additive Noise

Original image

Histogram

 $g(x, y) = f(x, y) + \eta(x, y)$

Degraded images

Gaussian

Rayleigh

Gamma

A model of the image degradation / restoration process

Linear, position-invariant degradation

Properties of the degradation function H

• Linear system

 $-H[af_{1}(x,y)+bf_{2}(x,y)]=aH[f_{1}(x,y)]+bH[f_{2}(x,y)]$

- Position(space)-invariant system
 - H[f(x,y)]=g(x,y) is position invariant if H[f(x- α , y- β)]=g(x- α , y- β)

Estimation of Degradation Function Degradation model:

$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$

or

$$G(u, v) = F(u, v) H(u, v) + N(u, v)$$

If we know exactly h(x y), regardless of noise, we can do deconvolution to get f(x y) back from g(x y).

Methods:

- 1. Estimation by Image Observation
- 2. Estimation by Experiment
- 3. Estimation by Modeling

3/21/2020

Estimation by Image Observation

Estimation by Experiment

Used when we have the same equipment set up

Estimation by Modeling

Used when we know physical mechanism underlying the image formation process that can be expressed mathematically.

Estimation by Modeling: Motion Blurring

Assume that camera velocity is $(x_0(t), y_0(t))$

The blurred image is obtained by

$$g(x, y) = \int_{0}^{T} f(x + x_{0}(t), y + y_{0}(t)) dt$$

where T = exposure time.

$$G(u, v) = \int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} g(x, y) e^{-j2\pi(ux+vy)} dxdy$$
$$= \int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{T} f(x+x_0(t), y+y_0(t)) dt \left] e^{-j2\pi(ux+vy)} dxdy$$
$$= \int_{0}^{T} \left[\int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} f(x+x_0(t), y+y_0(t)) e^{-j2\pi(ux+vy)} dxdy \right] dt$$

Estimation by Modeling: Motion Blurring (cont.)

$$G(u, v) = \int_{0}^{T} \left[\int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} f(x + x_{0}(t), y + y_{0}(t)) e^{-j2\pi(ux + vy)} dx dy \right] dt$$
$$= \int_{0}^{T} \left[F(u, v) e^{-j2\pi(ux_{0}(t) + vy_{0}(t))} \right] dt$$
$$= F(u, v) \int_{0}^{T} e^{-j2\pi(ux_{0}(t) + vy_{0}(t))} dt$$

Then we get, the motion blurring transfer function:

$$H(u, v) = \int_{0}^{T} e^{-j2\pi(ux_{0}(t)+vy_{0}(t))} dt$$

For constant motion

$$x_0(t), y_0(t)) = (at, bt)$$

H(u, v) =
$$\int_{0}^{T} e^{-j2\pi(ua+vb)} dt = \frac{T}{\pi(ua+vb)} \sin(\pi(ua+vb)) e^{-j\pi(ua+vb)}$$

3/21/20:

For constant motion

$$H(u, v) = \frac{T}{\pi(ua + vb)} \sin(\pi(ua + vb)) e^{-j\pi(ua + vb)}$$

Original image

Motion blurred image a = b = 0.1, T = 1

3/21/2020

Inverse Filtering

From degradation model:

$$G(u, v) = F(u, v) H(u, v) + N(u, v)$$

after we obtain H(u, v), we can estimate F(u, v) by the inverse filter:

In practical, the inverse filter is not popularly used.

3/21/2020

Inverse Filtering Contd...

- Divide equation one by H(u,v)
- $\frac{G(u,v)}{H(u,v)} = \frac{F(u,v)H(u,v) + N(u,v)}{H(u,v)}$

- We know that $\widehat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$
- Substitute $\hat{F}(u,v)$ in eqn (2)
- $\widehat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)}$
- If noise is zero the estimated image $\hat{F}(u,v)$ is equal to original image, but noise will not be properly removed in inverse filtering.

Inverse Filtering

Limitations:

- 1. Even if the degradation function is known the undegraded image cannot be recovered exactly because N(u,v) is the random function which is not known.
- 2. If the degradation function has '0' or small value the ratio $\frac{N(u,v)}{H(u,v)}$ easily dominates the estimate F(u,v,) one approach to get ride of 0 (or) small value problem to limits the filter frequency to the value near the origin.

WIENER FILTERING

 Inverse filtering has no explicit provision for handling noise but the wiener filtering it incorporates both degradation function, statistical characteristics of noise taken into the restoration process.

•
$$e^2 = E[(f - \hat{f})^2]$$

- Objective of the wiener filter is to find the estimate of uncorrupted image f, such that the mean square error is minimize the wiener filter is optimum filter
- Diagram

Wiener Filtering Contd...

• The error between the input signal and the estimated signal is given by the mean square error.

$$- e(\mathbf{x},\mathbf{y}) = \mathbf{f}(\mathbf{x},\mathbf{y}) - \hat{f}(\mathbf{x},\mathbf{y})$$

- $E[f(x,y) \hat{f}(x,y)^2] = 0$
- According to the principle of orthogonality the expected value of

 $f(x,y) - \hat{f}(x,y)$ totally orthogonal with g(x,y) is zero.

$$E[f(x,y) - \hat{f}(x,y)g(x,y)] = 0$$

$$\hat{f}(x,y) = g(x,y)*r(x,y)$$

$$E[f(x,y) - (g(x,y)*r(x,y))g(x,y)] = 0$$

$$E[f(x,y)g(x,y)] = E[(r(x,y)*g(x,y))g(x,y)]$$

$$= E\{[\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} r(x-k,y-l)g(k,l)]g(x,y)\}$$

Wiener Filtering Contd...
•
$$S_{gg}(u,v) = H(u,v)H^*(u,v)$$
. $S_{ff}(u,v)$
 $= |H(u,v)|^2 S_{ff}(u,v)$
 $R(u,v) = \frac{S_{fg}(u,v)}{S_{gg}(u,v)} = \frac{H^*(u,v)S_{ff}(u,v)}{|H(u,v)|^2 S_{ff}(u,v) + S\eta(u,v)}$
With presence of noise $S_{gg}(u,v) = |H(u,v)|^2 S_{ff}(u,v) + N(u,v)$
 $S\eta(u,v) = |N(u,v)|^2$
 $R(u,v) = \frac{H^*(u,v)S_{ff}(u,v)}{|H(u,v)|^2 S_{ff}(u,v) + S\eta(u,v)} = \frac{\hat{F}(u,v)}{G(u,v)}$
 $\hat{F}(u,v) = R(u,v)G(u,v)$
Multiply and divide by $H(u,v)$ in $R(u,v)$ and sub in $\hat{F}(u,v)$
 $\hat{F}(u,v) = \left[\frac{1}{H(u,v)}\frac{[H^*(u,v)H(u,v)]S_{ff}(u,v)}{[H(u,v)]^2 S_{ff}(u,v) + S\eta(u,v)}\right]G(u,v)$

Wiener Filtering Contd...

- $\hat{F}(u,v) = = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \frac{S\eta(u,v)}{S_{ff}(u,v)}}\right] G(u,v)$
- Wiener filter also know as minimum mean square filter or least mean square filter.
- Wiener filter does not have the same problem as the inverse filter unless both H(u,v) and $S\eta(u,v)$ are zero for the same value of u&v
- H(u,v) = degradation function
- H*(u,v) = complex conjugate of H(u,v)
- $|H(u,v)|^2 = H^*(u,v) H(u,v)$
- $S\eta(u,v) = |N(u,v)|^2 = Power spectrum of the noise$
- $Sf(u,v) = |F(u,v)|^2 = Power spectrum of an undegraded image.$

Wiener Filtering

- Consideration:
- 1. When a noise is zero

 $\eta(\mathbf{x},\mathbf{y})=0, \ \mathbf{S}\eta(\mathbf{u},\mathbf{v})=0$ $\widehat{F}(u,v)=\frac{\mathbf{G}(\mathbf{u},v)}{H(u,v)}$

It reduces to inverse filtering 2. IF H(u,v)=1

$$\widehat{F}(u,v) = \left[\frac{G(u,v)S_{ff}(u,v)}{S_{ff}(u,v) + S\eta(u,v)}\right]$$
$$\frac{G(u,v)\frac{S_{ff}(u,v)}{S\eta(u,v)}}{\frac{S_{ff}(u,v)}{S\eta(u,v)} + 1}$$

Wiener Filtering

- Signal to Noise ratio $\frac{S_{ff}(u,v)}{S\eta(u,v)}$
- 3. Signal to noise ratio is greater than 1

 $\frac{S_{ff}(u,v)}{S\eta(u,v)} >> 1$

Then $\hat{F}(u, v) = G(u, v)$ --- Here the wiener filter act as a all pass filters. ADVANTAGES:

- 1. The wiener filter does not have zero value problem untill both H(u,v) and $S\eta(u, v)$ is equal to zero.
- 2. The result obtained by wiener filter is more closer to the original image than inverse filter.

Approximation of Wiener Filter

Wiener Filter Formula:

$$\hat{F}(u, v) = \begin{bmatrix} \frac{1}{H(u, v)} & |H(u, v)|^2 \\ H(u, v) & + S_{\eta}(u, v) / S_{f}(u, v) \end{bmatrix} G(u, v)$$
Difficult to estimate

Approximated Formula:

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{\left|H(u,v)\right|^{2}}{\left|H(u,v)\right|^{2} + K}\right] G(u,v)$$

In Practice, K is chosen manually to obtain the best visual result!

Constrained Least Squares Filter

Degradation model:

$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$

Aims to find the minimum of a criterion function

$$C = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\nabla^2 f(x, y) \right]^2$$

Subject to the constraint

$$\left\| \mathbf{g} - \mathbf{H} \, \hat{\mathbf{f}} \right\|^2 = \left\| \mathbf{\eta} \right\|^2$$

where

In matrix form,

 $g = Hf + \eta$

$$\mathbf{w} \|^2 = \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

 $\begin{bmatrix}
 0 & -1 & 0 \\
 -1 & 4 & -1 \\
 0 & 1 & 0
 \end{bmatrix}$

Constrained least square filter is given by,

$$\hat{F}(u, v) = \left[\frac{H^{*}(u, v)}{|H(u, v)|^{2} + \gamma |P(u, v)|^{2}}\right] G(u, v)$$

where

P(u,v) = Fourier transform of p(x,y) =

3/21/2020

Constrained Least Squares Filter: Example

Constrained least square filter

$$\hat{F}(u, v) = \left[\frac{H^{*}(u, v)}{|H(u, v)|^{2} + \gamma |P(u, v)|^{2}}\right] G(u, v)$$

 γ is adaptively adjusted to achieve the best result.

Results from the previous slide obtained from the constrained least square filter

3/21/2020

Constrained Least Squares Filter: Adjusting γ

Constrained Least Squares Filter:Adjusting γ (cont.)

$$\hat{F}(u, v) = \left[\frac{H^{*}(u, v)}{|H(u, v)|^{2} + \gamma |P(u, v)|^{2}}\right] G(u, v)$$

$$R(u, v) = G(u, v) - H(u, v) \hat{F}(u, v)$$
For computing $\|\mathbf{r}\|^{2}$

$$\|\mathbf{r}\|^{2} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} r^{2}(x, y)$$

$$m_{\eta} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \eta(x, y)$$

$$\sigma_{\eta}^{2} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [\eta(x, y) - m_{\eta}]^{2}$$
For computing $\|\mathbf{n}\|^{2}$

$$\|\mathbf{n}\|_{y=1}^{2} = MN [\sigma_{\eta}^{2} - m_{\eta}]$$

Geometric Transformation

These transformations are often called rubber-sheet transformations: Printing an image on a rubber sheet and then stretch this sheet according to some predefine set of rules.

1. A spatial transformation :

Define how pixels are to be rearranged in the spatially transformed image.

2. Gray level interpolation :

Assign gray level values to pixels in the spatially transformed image.

Geometric Transformation : Algorithm

Spatial Transformation

To map between pixel coordinate (x y) of f and pixel coordinate (x'y') of g

$$x' = r(x, y)$$
 $y' = s(x, y)$

(x', y')

For a bilinear transformation mapping between a pair of Quadrilateral regions

$$x' = r(x, y) = c_1 x + c_2 y + c_3 xy + c_4$$

$$y' = s(x, y) = c_5 x + c_6 y + c_7 xy + c_8$$

To obtain r(x, y) and s(x, y), we need to know 4 pairs of coordinates and its corresponding v(x, y) e called tiepoints.

Gray Level Interpolation: Nearest Neighbor

Since (x', y') y not be at an integer coordinate, we need to Interpolate the value of g(x', y')

Example interpolation methods that can be used:

- 1. Nearest neighbor selection
- 2. Bilinear interpolation
- 3. Bicubic interpolation

