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A model of the image degradation / restoration
process
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filtering
Inverse filtering & Wiener filtering
Constrained Least square filtering
Geometric mean filter
Geometric and spatial transformation

 
 

 



What is Image Restoration?
•

•

Image restoration is to restore a degraded
image back to the original image
Image enhancement is to manipulate the

image so that it is suitable for a specific
application.
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Image Restoration

–

–

Image restoration attempts to restore
images that have been degraded

Identify the degradation process and attempt
to reverse it
Similar to image enhancement, but more
objective

 
 



A model of the image degradation/restoration
process

g(x,y)=f(x,y)*h(x,y)+(x,y)  – Spatial domain

G(u,v)=F(u,v)H(u,v)+N(u,v) – Frequency doma



A model of the image degradation/
restoration process

•Where,
f(x,y) -  input image
f^(x,y) - estimated original image
g(x,y) - degraded image
h(x,y) -  degradation function
(x,y) - additive noise term

 



Noise models
•

–

–

•
–
–

•
–
–

Sources of noise
Image acquisition (digitization) - Imaging sensors can
be affected by ambient conditions
Image transmission - Interference can be added
to an image during transmission

Spatial properties of noise
Statistical behavior of the gray-level values of pixels
Noise parameters, correlation with the image

Frequency properties of noise
Fourier spectrum
Ex. white noise (a constant Fourier spectrum)



Gaussian noise
•

•
•

Mathematical tractability in spatial and
frequency domains
Used frequently in practice
Electronic circuit noise and sensor noise
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Gaussian noise PDF

70% in [(), ()]
95% in [(), ()]
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The mean and variance of this density are given

by
 
 
 

 
a and b can be obtained through mean and

variance
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Rayleigh noise PDF
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The mean and variance of this density are given
by
 
a and b can be obtained through mean and
variance
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Erlang (Gamma) noise
 



 
Gamma noise (PDF)

 



 
The mean and variance of this density are
given by
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Exponential noise
 



Exponential Noise PDF
Special case of Erlang PDF with b=1
 



Uniform noise
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• Less practical, used for random number
generator
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Impulse (salt-and-pepper)
nosie
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If either Pa or Pb is zero, it is called unipolar.
Otherwise, it is called bipolar.

• Quick transients, such as faulty switching during
imaging
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Image Degradation with Additive Noise

Original image

Histogram

Degraded images

),(),(),( yxyxfyxg 
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A model of the image degradation /
restoration process

g(x,y)=f(x,y)*h(x,y)+(x,y)

G(u,v)=F(u,v)H(u,v)+N(u,v)



3/21/2020

Linear, position-invariant degradation

•
–

•
–

Linear system
H[af1(x,y)+bf2(x,y)]=aH[f1(x,y)]+bH[f2(x,y)]

Position(space)-invariant system
H[f(x,y)]=g(x,y) is position invariant if

 H[f(x-, y-)]=g(x-, y-)
 

Properties of the degradation function H
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Estimation of Degradation Function
Degradation model:

),(),(),(),( yxyxhyxfyxg 

),(),(),(),( vuNvuHvuFvuG 

Methods:
	1. Estimation by Image Observation
 
	2. Estimation by Experiment
 
	3. Estimation by Modeling

or

If we know exactly h (x ,y ), regardless of noise, we can do
deconvolution to get f (x ,y ) back from g (x ,y ).
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Estimation by Image Observation

f (x ,y ) f (x ,y )*h (x ,y ) g (x ,y )

Subimage

Reconstructed
Subimage
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Restoration
 process by
estimation

Original image (unknown) Degraded image
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Estimated Transfer
 function

Observation

This case is used when we
know only g (x ,y ) and cannot
repeat the experiment!
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Estimation by Experiment
      Used when we have the same equipment set up

Input impulse image

System
H ( )

Response image from
the system
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Estimation by Modeling
     Used when we know physical mechanism underlying the image
formation process that can be expressed mathematically.

Atmospheric
Turbulence model

6/522 )(),( vukevuH 



Example:Original image Severe turbulence

k  = 0.00025k  = 0.001

k  = 0.0025

Low turbulenceMild turbulence
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Estimation by Modeling: Motion Blurring
Assume that camera velocity is ))(),(( 00 tytx
The blurred image is obtained by
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where T  = exposure time.
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Estimation by Modeling: Motion Blurring (cont.)
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Then we get, the motion blurring transfer function:
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Motion Blurring Example
For constant motion
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Original image Motion blurred image
a  = b  = 0.1, T  = 1
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Inverse Filtering

after we obtain H (u ,v ), we can estimate F (u ,v ) by the inverse filter:
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From degradation model:
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Noise is enhanced
when H (u ,v ) is small.

To avoid the side effect of enhancing
noise, we can apply this formulation
to freq. component (u ,v ) with in a
radius D0 from the center of H (u ,v ).

In practical, the inverse filter is not popularly used.



Inverse Filtering Contd...
•  



Inverse Filtering
•  



WIENER FILTERING
•  



Wiener Filtering Contd...
•  



Wiener Filtering Contd...
•  



Wiener Filtering Contd...
•  



Wiener Filtering
•  



Wiener Filtering
•  
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Approximation of Wiener Filter
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In Practice, K  is chosen manually to obtain the best visual result!
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Degradation model:
),(),(),(),( yxyxhyxfyxg 

In  matrix form,

Constrained Least Squares Filter

ηHfg 

Aims to find the minimum of a criterion function
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Constrained Least Squares Filter: Example
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Constrained least square filter

  is adaptively adjusted to achieve the best result.

Results from the previous slide obtained
from the constrained least square filter
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Constrained Least Squares Filter:Adjusting 

Define fHgr ˆ
It can be shown that 2

)( rrr 
T



We want to adjust gamma so that a
22

ηr

where a = accuracy factor1.

2.

3.

Specify an initial value of 
 
Compute
 
Stop if           is satisfied

	Otherwise return step 2 after increasing   if
 
				             or decreasing   if
	Use the new value of   to recompute
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Constrained Least Squares Filter:Adjusting  (cont.)

),(
),(),(

),(
),(ˆ

22

*

vuG
vuPvuH

vuH
vuF























),(ˆ),(),(),( vuFvuHvuGvuR 













1

0

1

0

22
),(

1 M

x

N

y

yxr
MN

r

 











1

0

1

0

22 ),(
1 M

x

N

y

myx
MN
















1

0

1

0

),(
1 M

x

N

y

yx
MN

m 


 


 mMN 
22

η

2
η

2
rFor computing

For computing



3/21/2020

Geometric Transformation
These transformations are often called rubber-sheet transformations:
Printing an image on a rubber sheet and then stretch this sheet according
to some predefine set of rules.

A geometric transformation consists of 2 basic operations:
	1. A spatial transformation :
		Define how pixels are to be rearranged in the spatially
		transformed image.
	2. Gray level interpolation :
		Assign gray level values to pixels in the spatially
		transformed image.
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Geometric Transformation : Algorithm

Distorted image g

1.
2.

Select coordinate (x,y) in f  to be restored
Compute

),( yxrx 

),( yxsy 

3. Go to pixel
in a distorted image g

),( yx 

Image f  to be
restored

4. get pixel value at
By gray level interpolation

),( yxg 

5. store that value in pixel f (x ,y )

1
3

5
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Spatial Transformation
     To map between pixel coordinate (x ,y ) of f  and pixel coordinate
(x ’,y ’) of g

),( yxrx  ),( yxsy 

     For a bilinear transformation mapping between a pair of
Quadrilateral regions

4321),( cxycycxcyxrx 

8765),( cxycycxcyxsy  ),( yx  ),( yx

To obtain r (x ,y ) and s (x ,y ), we need
 to know 4 pairs of coordinates
             and its corresponding
which are called tiepoints. ),( yx ),( yx
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Gray Level Interpolation: Nearest Neighbor

Since             may not be at an integer coordinate, we need to
Interpolate the value of

),( yx 

),( yxg 

Example interpolation methods that can be used:
	1. Nearest neighbor selection
	2. Bilinear interpolation
	3. Bicubic interpolation


