IMAGE RESTORATION
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A model of the image degradation / restoration
process

Noise models

Restoration in the presence of noise only — spatial
filtering

Inverse filtering & Wiener filtering
Constrained Least square filtering
Geometric mean filter

Geometric and spatial transformation



What is Image Restoration?

‘Image restoration is to restore a degraded
image back to the original image

‘Image enhancement is to manipulate the
image so that it is suitable for a specific
application.




Image Restoration

Image restoration attempts to restore
images that have been degraded

— |dentify the degradation process and attempt
to reverse it

— Similar to image enhancement, but more
objective



A model of the image degradation/restoration
process

Degradation
function
H

DEGRADATION

Moise
(X, V)

Restoration
filter(s)

RESTORATION

i g(x,y)=f(x,y)*h(x,y)+n(x,y) — Spatial domain
_ G(u,v)=F(u,v)H(u,v)+N(u,v) — Frequency doma



A model of the image degradation/
restoration process

*Where,
f(x,y) - inputimage
fA(x,y) - estimated original image
g(x,y) - degraded image
h(x,y) - degradation function
n(x,y) - additive noise term



Noise models

* Sources of noise
— Image acquisition (digitization) - Imaging sensors can
ne affected by ambient conditions

— Image transmission - Interference can be added
to an image during transmission

* Spatial properties of noise
— Statistical behavior of the gray-level values of pixels
— Noise parameters, correlation with the image

* Frequency properties of noise
— Fourier spectrum
— Ex. white noise (a constant Fourier spectrum)




Gaussian noise
* Mathematical tractability in spatial and
frequency domains
- Used frequently in practice

* Electronic circuit noise and sensor noise
1
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Gaussian noise PDF

70% in [(u~o), (u+o)]
95% in [(L—20), (u+20)]

Craussian




Rayleigh noise

2 —(z—a)%/b
p(z)_<—(z—a)e for z=> a
—31b
0 for z< a

—The mean and variance of this density are given
by

b(4—7w
U=a+~zb/4 and 0" = ( )
4

—a and b can be obtained through mean and
variance



Rayleigh noise PDF
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Erlang (Gamma) noise

b _b—1
a 2z

p(2) =3 (b—1)
p for z<0

e ™ for z>20

— The mean and variance of this density are given
b

by A =Db/a and 0'22—2
a
— a and b can be obtained through mean and
variance



Gamma noise (PDF)
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Exponential noise

ae ©  for z>0
p(z) =
0 for z<O0

The mean and variance of this density are
given by

1
— 2_
A =1/a and O __a2



Exponential Noise PDF
Special case of Erlang PDF with b=
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Uniform noise

* Less practical, used for random number
generator

1
if a<z<hp
p(2) =4 p—g
\ 0 otherwise
a+b
Mean: /A= )

2 (b_a)2
12

Variance: O



Uniform PDF
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Impulse (salt-and-pepper)
nosie

* Quick transients, such as faulty switching during
iImaging

(

P for z= a

p(z) =<4 P, for z=0b

b

\O otherwise

It either P_ or P, is zero, it is calledunipolar.
Otherwise, it is calledbipolar.



Impulse (salt-and-pepper) nosie
PDF
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Image Degradation with Additive Noise
g(x, y) = f(x, y)+7(x, y)

Degraded images

Original image

Histogram

—

Gaussian Ravleigh Gamma



A model of the image degradation /

restoration Process

Degradation

flx,¥) I:[}" function

H

M oise
X, V)

DEGRADATION

- g(xy)=fxy)*h(xy)+n(xy)
_ G(u,v)=F(u,v)H(u,v)+N(u,v)

Restoration
filter(s)

RESTORATION




Linear, position-invariant degradation

Properties of the degradation function H

* Linear system
— Hlaf, (x,y)+bf,(x,y)]=aHIf, (x,y)[+bHIf,(x,y)]
* Position(space)-invariant system
— H[f(x,y)]=g(x,y) is position invariant if
HIf(x-o, y-B)l=g(x-t, y-B)



Estimation of Degradation Function
Degradation model:

g(x, y)= f(x,y)*h(x, y)+7(x, y)
or

G(u,v)=F(u,v)H (u,v)+ N (u,v)

If we know exactlyh (x y), regardless of noise, we can do
deconvolution to getf(xy) back fromg(xy).

Methods:
1. Estimation by Image Observation

2. Estimation by Experiment

3. Estimation by Modeling
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Estimatiomby//mage:Observation

Original image (unknown) Degraded image

fxy) fxy)yhxy) gky)

Observation

Subimage

n g.(x,y)
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Restoration |
process by :
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Estimated Transfer
function r G, (u,v) -

H(uv)=H (uv)=
estimation
This case is used when we Recongtructed
Subimage

know onlyg ( y ) and cannot

repeat the experiment!
3/21/2020




Estimatiomby Experiment

Used when we have the same equipment set up

Response image from
the system

Input impulse image

o

AO(X, y)

DFT ‘

DFT {Ao(x, y)l= A

k H(u,v)zG(:'V)




Estimatiomby Modeling

Used when we know physical mechanism underlying the image
formation process that can be expressed mathematically.

Originalimage Severe turbulence Example:

Atmospheric
Turbulence model

k(u2+v2)5/6

H(uv)=e

s, T i

k- =0:0002



Estimationby:Modeling: MotiomBlurring

Assume that camera velocity is (x (1), y. (1)
o\ Yo

The blurred image is obtained by

If x+ x,(t), y+ y, (1)) dt

whereT = exposure time.

zj T]Ofx+x ), y+ y,(t)e

3/21/2020

—j27(ux+vy) dXdy

e—jZ/Z'( ux+vy) dXdy

dt



Estimatiomby /Maodeling: Motion Blurring;(cont!)

G(u,v)=

jj f(x+x,(1), y+ y, (1) e e 27 dxdly

[F (U V) e—j27z(ux0(t)+vy0(t)) ]dt

]
= F(u, v) Je_jm o (4o (1) g
0

Then we get, the motion blurring transfer function:

.
H (U, V) — J‘e—/27f(uxo(t)+vyo(t)) dt

0

For constant motion (x, (1), y,(t) = (at, bt)

T

—j27(ua+tv T .
H (u, v) =je PR o — sin( 7z(ua + vb)) e
7T(ua + vb)

3/21/20: 0

dt

7r(ua+vb)



MotiomBlurring:Example

For constant motion

H(u,v) = r sin( 7(ua +vb)) e
7T(ua + vb)

—j7z(ua+vb)

Original image Motion blurred image
a=b=01T-=1
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Inverse Filtering
From degradation model:

G(u,v)=F(u,v)H (u,v)+ N (u,v)

after we obtainH  v), we can estimateF ( v) by the inverse filter:

E _G(u,v)
(u, v) = 0 = F(u,v)

Noise is enhanced
whenH @ yv) is small.

To avoid the side effect of enhancing
noise, we can apply this formulation
to freq. component  y) within a
radiusD, from the center of Hu v).

In practical, the inverse filter is not popularly used.

3/21/2020



Inverse Filtering Contd...

Divide equation one by H(u,v)

G(wv) _ Fuv)Huv)+Nw,v)
H (H,Uj H (H,U]

G(u,v)
H(u,v)

We know that F(u,v) =
Substitute F(u,v) in eqn (2)
F(u,v)=F(uv)+ V(D)

H{u,v)

[f noise is zero the estimated image F(u,v) is equal to original image,
but noise will not be properly removed in inverse filtering.



Inverse Filtering

“ Limitations:

l.

Even if the degradation function is known the undegraded image
cannot be recovered exactly because N(u,v) 1s the random function
which 18 not known.

N(u,v)
H(u,v)
easily dominates the estimate F(u,v,) one approach to get ride of 0
(or) small value problem to limits the filter frequency to the value
near the origm.

If the degradation function has ‘0" or small value the ratio



WIENER FILTERING

* Inverse filtering has no explicit provision for handling noise but the
wiener filtering 1t incorporates both degradation function, statistical
characteristics of noise taken into the restoration process.

& =E[(tf)?
* Objective of the wiener filter 1s to find the estimate of uncorrupted

image f, such that the mean square error 1s mmimize the wiener filter
1s optimum filter

* Diagram



Wiener Filtering Contd...

* The error between the mput signal and the estimated signal is given by
the mean square error.

- e(x.y) =flx,y) ()

~ E[f{x,y) ~f(x,y)*] =0
* According to the principle of orthogonality the expected value of
f{x,y) —f(x,y) totally orthogonal with g(x,y) is zero.
BIfx.y) - (x.y)g(xy)] =0
f(xy) = gxy*1(xy)
E[f(xy)- (g0xy)*r(x,y)g(x,y)] =0
E[f(x.y)g(x.y)] = E[(r(xy)*g(x,y)gx.y)]

“E{ X 22— — iy — D g (k, D]g(xy)}



Wiener Filtering Contd...

* S,(wv)=H(u,v)H*(u,v). Sg(u,v)

= |H(u,v)|? Sg(u,v)

Srg(uv) _ H* (u,v)S {1, V)

Sqg W) |HW)2SH{W,V)+5n(w,v)

With presence of noise S_,(u,v) = [H(u,v)|* S(u,v)+ N(u,v)
Sn(u, v) = N(u,v)P

R(u.¥)- H™ (uv)S (U, V) _ Fluy)
|Hu) 2S(WV)+Sn(uv)  G(uw)

F(u,v) = R(u,v)G(u,v)
Multiply and divide by H(u,v) in R(u,v) and sub in F(u, v)

|H* () H(u,v)|Sfp(u,v)
F (W, v) = ’H{u v) [|Hwv)["S, (uv)+Sn(wv)

R(u,v)=

]G('u,v)



Wiener Filtering Contd...

~ T 1 |H(u,v)|*
F(u, L”)— - [H(u,vj H(up |E S1 {uv

G(u V)

Wiener filter also know as minimum mean square filter or least mean
square filter.

Wiener filter does not have the same problem as the inverse filter
unless both H(u,v) and Sn(u,v) are zero for the same value of u&v

H(u,v) = degradation function
H*(u,v) = complex conjugate of H(u,v)
H(u,v)|2 = H*(u,v) H(u,v)

Sn(u,v) = |N(u,v)[2 = Power spectrum of the noise

Sf(u,v) = |F(u,v)|2 = Power spectrum of an undegraded image.



Wiener Filtering

* Consideration:

. When a noise 1s zero
(x,y)=0, Sn(u,v) =0

G(u,v)

H(u,v)

F(u,v) =

[t reduces to nverse filtering
2. IF H(u,v)=1

F(u,v)= [ G(u,v)s,, wo)

S, (w)+5n(u,v)

S, {uw)
G(uv) Sniuv

S, wy)
Sniuw) 1

e




Wiener Filtering

* Signal to Noise rath
SM(u.v)
3. Signal to noise ratio 1s greater than 1

S Et(u,v)}} l

Sn(u,v)
Then F(u,v) = G(u,v) --- Here the wiener filter act as a all pass filters.
ADVANTAGES:

I. The wiener filter does not have zero value problem untill both H{u,v)
and Sn(u, v) 1s equal to zero.

2. The result obtained by wiener filter 1s more closer to the original
image than mverse filter,



Approximation of Wiener Filter

Wiener Filter Formula:

R 1
F(u,v)=

‘H(u, v)!2

Approximated Formula:

I-:(u, V) =

H (u, v) ‘H(u, +S,(u,v)/S,

— |G (u, v)

(w5

N

D

|

1 ‘H(u, V)

H () |1 (o0 + K

ifficult to estimate

G(u,v)

In Practice,K is chosen manually to obtain the best visual result!

3/21/2020



Constrained L east'Squares:Filter

Degradation model:
g(x, y) = f(x, y)*h(x, y) +77(x, y)

Aims to find the minimum of a criterion function

M -1 N -1

Subject to the constraint

c=Y YV Fx
o~ =[n[

Constrained least square filter is given by,

where

3/21/2020

F(u,v)= A (u,v)

In matrix form,

where

_‘H (u, v)‘2 +7/‘P(u, V)

P y) = Fourier transform ofp (xy ) =

‘2

g =Hf +n

G(u,v)

2 T
wl =w'w




Constrained Least'Squares:Filter: Example

Constrained least square filter

H (u,v)

l-:(u, V) = G(u,v)

‘2

_‘H (u, v)‘2 +]/‘P(u, V)

y is adaptively adjusted to achieve the best result.

Results from the previous slide obtained
from the constrained least square filter

3/21/2020



Constrained L east:Squares:Filter:Adjustingy

Define . _ g—H ¢ Iltcanbe shown that ANy)=r 't = Hr Hz

We want to adjust gamma so that Hr H2 — Hn H2 +ta —@
1. Specify an initial value ofy where a = accuracy factor
2. Compute ,

]

3. Stopif is sausfied

Otherwise retur&ﬁtep 2 afterincreasingy if

or decreasingy if

Use the new value ofy to recompute

/-:(u, V) =

" <] -2
"> ] + 2
I H (u,v) )
G (u,
_‘H(u, v)‘z—l—}/‘P(u, v)‘z_ ()




Constrained Lleast'Squares:Filter:Adjustingyy (cont.)

F(u,v)= Hz*(u, ') ~ |G (u, v)
_‘H(u, v)‘ +}/‘P(u, v)‘ |
R(u,v) =G (u,v)—H (u, v)/-:(u, V)
=55
M =1 N —1 )
——ZZU(X y)
0f7=ﬁ§;[77(x, y)—m I
][ = mw 107 = m, )

3/41/2UZU
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> For computing

> For computing

Il

2
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Geometric: Transformation

These transformations are often called rubber-sheet transformations:
Printing an image on a rubber sheet and then stretch this sheet according
to some predefine set of rules.

A geometric transformation consists of 2 basic operations:
1. A spatial transformation :
Define how pixels are to be rearranged in the spatially
transformed image.
2. Gray level interpolation :
Assign gray level values to pixels in the spatially
transformed image.

3/21/2020



Geometric: Transformation): Algorithm

(X, ) (X, y)
/
N I AT
A\ L /
\e 7 \\\ //
7 ~
\ . .
Imagef to be Distorted imageg
restored

—

Select coordinate (x,y) inf to beregtored
2. Compute

get pixel value at g(x', y"

’ —
x =r(x, y) By gray level interpolatiol.

y'=s(x, y)
t value in pixelf
3. Go to pixel (x', vy P «)

in a distorted imageg



Spatial Transformation

To map between pixel coordinate (x ) off and pixel coordinate
x'y’)ofg

x'=r(x,y) y'=s(x, y)

For a bilinear transformation mapping between a pair of
Quadrilateral regions

X'=r(x,y)=cx+c,y+c,xy+c,

y'=s(x,y)=cx+cy+cxy+e,

To obtainr (¢ y ) ands (x y ), we need

to know 4 pairs of coordinates e e

and its corresponding

v( x, y) e called tiepoints. (x', y))

3/21/2020




Gray Level/Interpolation: Nearest/Neighbor

Since (x', y')y not be at an integer coordinate, we need to

InterpGiaie uie value of

Example interpolation methods that can be used:

a(x', y)

1. Nearest neighbor selection
2. Bilinear interpolation
3. Bicubic interpolation

Spatial transformation

T

(x. ¥) /

N

e () 7)
L

3/21/2020

flx. )

pan.

st neighbor to (', V')

h\ ]

Gray-level assignment




