
Module I

Basic of Computer Hardware and Softwares

Computer is an advanced electronic device that takes raw data as input from the user and processes

these data under the control of set of instructions (called program) and gives the result (output)

and saves output for the future use.

Computer Architecture

The basic components of a modern digital computer are: Input Device, Output Device, Central

Processor Unit (CPU), mass storage device and memory.

Central Processor Unit (CPU)

It is the brain of the computer system. All major calculation and comparisons are made inside the

CPU and it is also responsible for activation and controlling the operation of other unit. This unit

consists of two major components that are arithmetic logic unit (ALU) and control unit (CU).

• Arithmetic Logic Unit (ALU)

Here arithmetic logic unit performs all arithmetic operations such as addition, subtraction,

multiplication and division. It also uses logic operation for comparison.

• Control Unit (CU)

The control unit of a CPU controls the entire operation of the computer. It also controls all devices

such as memory, input/output devices connected to the CPU.

http://ecomputernotes.com/fundamental/introduction-to-computer/explain-about-the-evolution-of-digital-computers

Input /Output Unit

The input/output unit consists of devices used to transmit information between the external world

and computer memory. The information fed through the input unit is stored in computer's memory

for processing and the final result stored in memory can be recorded or display on the output

medium.

Eg: Mouse, Keyboard, Printer, Monitor, etc.

Memory Unit

Computer memory is any physical device capable of storing information temporarily,

like RAM (random access memory), or permanently, like ROM (read-only memory).

Memories can be classified into two categories

• Primary Memory

• Secondary Memory

Primary memory is computer memory that is accessed directly by the CPU. There are two types

of primary memory.

• Read Only Memory (ROM)

• Random Access Memory (RAM)

The content of ROM cannot be changed and can be used only by CPU. It is needed to store Basic

Input Output System (BIOS), which is responsible for booting. This memory is permanent in

storage (non volatile) and is very small in size.

The RAM is a volatile memory i.e. its contents get destroyed as soon as the computers is switched

off. All kinds of processing of CPU are done in this memory.

Secondary Memory

Primary memory has limited storage capacity and is volatile. Secondary memory overcome this

limitation by providing permanent storage of data and in bulk quantity. Secondary memory is also

termed as external memory and refers to the various storage media on which a computer can store

data and programs. The Secondary storage media can be fixed or removable. Fixed Storage media

is an internal storage medium like hard disk that is fixed inside the computer. Storage medium that

are portable and can be taken outside the computer are termed as removable storage media.

https://www.computerhope.com/jargon/r/ram.htm
https://www.computerhope.com/jargon/r/rom.htm

eg: Hard disk, Magnetic Tapes, Pen drive

Memory Hierarchy (Out of Scope)

In the Computer System Design, Memory Hierarchy is an enhancement to organize the memory

such that it can minimize the access time. The Memory Hierarchy was developed based on a

program behavior known as locality of references. The figure below clearly demonstrates the

different levels of memory hierarchy:

System Software and Application Software

System Software:

 System Software is the type of software which is the interface between application software

and system. Low level languages are used to write the system software. System Software maintain

the system resources and give the path for application software to run. An important thing is that

without system software, system cannot run. It is a general purpose software.

Application Software:

Application Software is the type of software which runs as per user request. It runs on the

platform which is provide by system software. High level languages are used to write the

application software. It is a specific purpose software.

The main difference between System Software and Application Software is that without system

software, system cannot run on the other hand without application software, system always runs.

S.NO SYSTEM SOFTWARE APPLICATION SOFTWARE

1.

System Software maintain the system

resources and give the path for application

software to run.

Application software is built for

specific tasks.

2.
Low level languages are used to write the

system software.

High level languages are used to

write the application software.

3 Machine Dependent Machine independent

4 It is a general-purpose software. It is a specific purpose software.

5.
Without system software, system can’t

run.

Without application software

system always runs.

6

System software runs when system is

turned on and stop when system is turned

off.

While application software runs

as per the user’s request.

7 Compiler, Operating System, Interpreter
Photoshop, Microsoft Office,

VLC

Types of Languages

Computer programs can be written in high and low level languages, depending on the task and the

hardware being used.

High Level Language

High level languages are written in a form that is close to human language, enabling to

programmer to just focus on the problem being solved.

Advantages

• Easier to modify as it uses English like statements

• Easier/faster to write code as it uses English like statements

• Easier to debug during development due to English like statements

• Portable code – not designed to run on just one type of machine

Example: C, C++, Java, python

Low Level Language

https://www.computerscience.gcse.guru/glossary/low-level-languages
https://www.computerscience.gcse.guru/glossary/high-level-languages

Low level languages are used to write programs that relate to the specific architecture and

hardware of a particular type of computer.

They are closer to the native language of a computer (binary), making them harder for

programmers to understand.

Example: Machine Code

Assembly Language

An assembly language is a low-level programming language designed for a specific type

of processor.

Example: 8085 programing

System Translator

A translator is a programming language processor that converts a computer program from one

language to another. It takes a program written in source code and converts it into machine

code. It discovers and identifies the error during translation. There are 3 different types of

translators as follows:

1) Compiler

A compiler is a translator used to convert high-level programming language to low-level

programming language.

Eg: gcc, javac, g++

2) Interpreter

Just like a compiler, is a translator used to convert high-level programming language to low-level

programming language.

Example: Python, jvm

3) Assembler

An assembler is a translator used to translate assembly language to machine language.

Example: Fortran Assembly Program (FAP), Macro Assembly Program (MAP)

https://www.computerscience.gcse.guru/glossary/low-level-languages
https://www.computerscience.gcse.guru/glossary/binary
https://techterms.com/definition/programming_language
https://techterms.com/definition/processor
https://teachcomputerscience.com/programming-languages/
https://teachcomputerscience.com/programming-languages/

BASIS FOR

COMPARISON
COMPILER INTERPRETER

Input It takes an entire program at a time. It takes a single line of code or

instruction at a time.

Output It generates intermediate object

code.

It does not produce any

intermediate object code.

Working

mechanism

The compilation is done before

execution.

Compilation and execution take

place simultaneously.

Speed Comparatively faster Slower

Errors Display all errors after compilation,

all at the same time.

Displays error of each line one by

one.

Error detection Difficult Easier comparatively

Example Gcc, g++, javac Python, jvm

Structured Approach to Programming

Structured Programming Approach can be defined as a programming approach in which the

program is made as a single structure. It means that the code will execute the instruction by

instruction one after the other. It doesn’t support the possibility of jumping from one instruction

to some other with the help of any statement like GOTO, etc. Therefore, the instructions in this

approach will be executed in a serial and structured manner. The languages that support Structured

programming approach are:

• C

• C++

• java

Advantages of Structured Programming Approach:

1. Easier to read and understand

2. Easier to Maintain

3. Easier to Debug

4. Machine-Independent, mostly.

Disadvantages of Structured Programming Approach:

1. Since it is Machine-Independent, so it takes time to convert into machine code.

2. The converted machine code is not the same as for assembly language.

Flowchart, Algorithm and Pseudo Code

Algorithm

It is a complete step by step representation of the solution of the problem, represented in English

like Languages. An algorithm can be abstract or quite detailed. A detailed algorithm consists of

every step, equivalent to one instruction of a programming language.

Example: Algorithm to find area of circle

1. Read the value of the radius

2. Calculate the area of circle

3. Print the area of circle.

Pseudo Code

It is a more formal representation than the algorithm. Here, we represent every stp in a formal

way which is very close to the actual programming language representation. In pseudocode, each

of the steps will be written via operator and statements equivalent to some programming

language instructions. The only difference will be that the exact syntax of the programming

language will not be followed. All pseudocodes will start with the keyword “START” and

complete with keyword “STOP” or “END”.

Example: Pseudocode to find area of circle

1. START

2. Read radius

3. area = 3.14 * radius * radius

4. print sum

5. STOP

Flowchart

Very popular method to represent the steps of the solution is the flowchart, which uses many

graphical symbols and thus, is more understandable. The symbol used for various different types

of statements are as shown

Start, Stop

Read, Print

Processing Statements

Condition Check

Direction of flow

Connectors (for longer flow chart)

Example: Flowchart for finding area of circle

	 Arithmetic Logic Unit (ALU)
	 Control Unit (CU)
	Input /Output Unit
	Memory Unit
	1) Compiler
	2) Interpreter
	3) Assembler

