
MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Module V

Pointers

The pointer in C language is a variable which stores the address of another variable. This

variable can be of type int, char, array, function, or any other pointer. The size of the pointer

depends on the architecture. However, in 32-bit architecture the size of a pointer is 2 byte.

Consider the following example to define a pointer which stores the address of an integer.

int n = 10;

int* p = &n; // Variable p of type pointer is pointing to the address of the variable n of type integer.

Declaring a pointer

The pointer in c language can be declared using * (asterisk symbol). It is also known as indirection

pointer used to dereference a pointer.

int *a;//pointer to int

char *c;//pointer to char

Accessing Data through Pointers

Consider the following example:

#include<stdio.h>

void main()

{

 int n = 10;

 int *p;

 p = &n;

 printf("Address of n=%u\n",&n);

 printf("Value of n=%d\n",n);

 printf("Address of p=%u\n",&p);

 printf("Value of p=%u\n",p);

 printf("Value of *p=%d\n",*p); // *p = value of n;

}

Output

Address of n=6487628

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Value of n=10

Address of p=6487616

Value of p=6487628

Value of *p=10

Each variables has two properties: address and value. Address of a variable is the memory location

allocated for that variable. Value of a variable is the value stored in the memory location allocated

to them. The address of a variable can be derived using address of (&) operator. In the example

above, the address of n is 6487628 and value is 10.

Variable Name Address Value

n 6487628 10

When p is assigned with &n. p stores the address of n. Thus p points to n. In order to retrieve the

value of n, we can make use of *p.

Pointer Name Address Value Asterisk Value *

p 6487616 6487628

Address of variable n

10

Value of n

NULL Pointer

A pointer that is not assigned any value but NULL is known as the NULL pointer. If you don't

have any address to be specified in the pointer at the time of declaration, you can assign NULL

value. It will provide a better approach.

int *p=NULL;

Array Access using Pointers

Write a program to display the content of an array using pointer.

#include<stdio.h>

void main()

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

{

 int A[]={10,20,30,40,50};

 int i;

 int *p = A; //Variable p of type pointer is pointing to the address of an integer array A.

printf("Array Content\n");

 for(i=0;i<5;i++)

 {

 printf("%d\t",*(p+i));

 }

}

Output

Array Content

10 20 30 40 50

2) Write a program to read and display an array using pointer.

#include<stdio.h>

#include<malloc.h>

void main()

{

 int i,n;

 int *p = malloc(30 * sizeof(int)); // equivalent to int p[30];

 printf("Enter the size of array:");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 scanf("%d",p+i);

 }

 printf("Array Content\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",*(p+i));

 }

}

Enter the size of array:5

10 15 20 25 30

Array Content

10 15 20 25 30

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

3) Write a program to sort the content of an array using pointers

#include<stdio.h>

#include<malloc.h>

void main()

{

 int i,n,temp,j;

 int *p = malloc(30 * sizeof(int)); // equivalent to int p[30];

 printf("Enter the size of array:");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 scanf("%d",p+i);

 }

 for(i=0;i<n-1;i++)

 {

 for(j=0;j<n-i-1;j++)

 {

 if(*(p+j) > *(p+j+1))

 {

 temp = *(p+j);

 *(p+j) = *(p+j+1);

 *(p+j+1) = temp;

 }

 }

 }

 printf("Array Content\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",*(p+i));

 }

}

Output

Enter the size of array:5

16 7 14 2 5

Array Content

2 5 7 14 16

Pass By Reference

In C programming, it is also possible to pass addresses as arguments to functions. To accept these

addresses in the function definition, we can use pointers. In this method, the address of the actual

parameters is passed to formal parameters. So any change in formal parameters will be reflected

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

in the actual parameters. Consider the program to swap to two numbers using pass by reference

method,

#include<stdio.h>

int swap(int *a,int *b)

{

 int temp=*a;

 *a= *b;

 *b=temp;

}

void main()

{

 int x,y;

 printf("Enter the numbers:");

 scanf("%d%d",&x,&y);

 printf("Before swapping : x=%d\ty=%d\n",x,y);

 swap(&x,&y);

 printf("After swapping : x=%d\ty=%d",x,y);

}

Output

Enter the numbers:10 20

Before swapping : x=10 y=20

After swapping : x=20 y=10

Difference between pass by value and pass by reference.

pass by value Pass by reference

In call by value, a copy of actual arguments is

passed to formal arguments of the called

function and any change made to the formal

arguments in the called function have no effect

on the values of actual arguments in the calling

function.

In call by reference, the location (address) of

actual arguments is passed to formal arguments

of the called function. This means by accessing

the addresses of actual arguments we can alter

them within from the called function.

In call by value, actual arguments will remain

safe, they cannot be modified accidentally.

In call by reference, alteration to actual

arguments is possible within from called

function; therefore the code must handle

arguments carefully else you get unexpected

results.

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

File

A file represents a sequence of bytes, regardless of it being a text file or a binary file. When a

program is terminated, the entire data is lost. Storing in a file will preserve your data even if the

program terminates. It is easy to move the data from one computer to another without any changes.

When working with files, you need to declare a pointer of type file. This declaration is needed for

communication between the file and the program.

FILE *fp; // *fp – file pointer variable

Types of Files

There are two types of files

 Text files

 Binary files

1. Text files

Text files are the normal .txt files. You can easily create text files using any simple text editors

such as Notepad. When you open those files, you'll see all the contents within the file as plain text.

It is easy to edit or delete the contents. They take minimum effort to maintain, are easily readable,

and provide the least security and takes bigger storage space.

2. Binary files

Binary files are mostly the .bin files in the computer. Instead of storing data in plain text, they store

it in the binary form (0's and 1's). They can hold a higher amount of data, are not readable easily,

and provides better security than text files.

File Operations

1) Opening a file:

Opening a file is performed using the fopen() function defined in the stdio.h header file.

The syntax for opening a file in standard I/O is:

FILE *fp

fp = fopen("filename","mode");

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

File Opening Mode

Sl. No Mode Description

1 r Opens an existing text file for reading purpose.

2 w

Opens a text file for writing. If it does not exist, then a new file is

created. Here your program will start writing content from the

beginning of the file.

3 a

Opens a text file for writing in appending mode. If it does not exist,

then a new file is created. Here your program will start appending

content in the existing file content.

4 r+ Opens a text file for both reading and writing.

5 w+
Opens a text file for both reading and writing. It first truncates the file

to zero length if it exists, otherwise creates a file if it does not exist.

6 a+

Opens a text file for both reading and writing. It creates the file if it

does not exist. The reading will start from the beginning but writing

can only be appended.

File Location

We can provide the relative address of the file location or absolute address of the file. Consider

your working directory is C:\CP\Test\ . Now you want to open a file hello.c in read mode. Two

ways to provide the file location are as given below:

fp = fopen("hello.c","r");

OR

fp = fopen("C:\\CP\\Test\\hello.c","r")

2. Closing a file

The file (both text and binary) should be closed after reading/writing. Closing a file is performed

using the fclose() function.

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

fclose(fp);

Here, fp is a file pointer associated with the file to be closed.

3. Reading and writing to a file

Sl. No Function Name Description Syntax

1 fgetc To read a character from a file ch = fgetc(fp)

2 fputc To write a character to a file fputc(ch,fp)

3 fscanf To read numbers, string from a file fscanf(fp,"%d",&n)

4 fprintf To write numbers, strings to a file fprintf(fp,"%d",n)

5 fread To read binary content from a file. It

is used to read structure content.

Refer Note

6 fwrite To write as binary content to a file. Refer Note

Note:

1) The only difference is that fprint() and fscanf() expects a pointer to the structure FILE.

2) To write into a binary file, you need to use the fwrite() function. The functions take four

arguments:

 Address of data to be written in the disk

 Size of data to be written in the disk

 Number of such type of data

 Pointer to the file where you want to write.

fwrite(addressData, sizeData, numbersData, pointerToFile);

3) Function fread() also take 4 arguments similar to the fwrite() function as above.

fread(addressData, sizeData, numbersData, pointerToFile);

feof()

The C library function int feof(FILE *stream) tests the end-of-file indicator for the given stream.

This function returns a non-zero value when End-of-File indicator associated with the stream is

set, else zero is returned.

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Random Access to a file

1) rewind()

The rewind() function sets the file pointer at the beginning of the stream. It is useful if you have

to use stream many times.

Syntax: rewind(file pointer)

2) fseek()

If you have many records inside a file and need to access a record at a specific position, you need

to loop through all the records before it to get the record. This will waste a lot of memory and

operation time. An easier way to get to the required data can be achieved using fseek().

fseek(FILE * stream, long int offset, int pos);

The first parameter stream is the pointer to the file. The second parameter is the position of the

record to be found, and the third parameter specifies the location where the offset starts.

Different positions in fseek()

Position Meaning

SEEK_SET Starts the offset from the beginning of the file.

SEEK_END Starts the offset from the end of the file.

SEEK_CUR Starts the offset from the current location of the cursor in the file.

3) ftell()

ftell() in C is used to find out the position of file pointer in the file with respect to starting of the

file.

Syntax of ftell() is:

ftell(FILE *pointer)

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Difference between sequential and random access.

Sequential file access is the method employed in tape drives where the files are access in

a sequential manner. So if you have to get a file in the end of the tape you have to start from the

beginning till it reaches the beginning of the file.

Random access files are similar to the one in Hard Disks and Optical drives, wherever the

files is placed it will go to that particular place and retrieve it.

Accessing data sequentially is much faster than accessing it randomly because of the way

in which the disk hardware works.

Examples Programs

1) Write a program to display the content of a file.

#include<stdio.h>

void main()

{

 FILE *fp;

 char ch;

 fp = fopen("test.txt","r");

 while(feof(fp) == 0)

 {

 ch=fgetc(fp);

 printf("%c",ch);

 }

 fclose(fp);

}

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Content of test.txt

Hello, Welcome to C Programming Lectures.

Output

Hello, Welcome to C Programming Lectures.

2) Write a program to count numbers of vowels in a given file.

#include<stdio.h>

void main()

{

 FILE *fp;

 char ch;

 int countV=0;

 fp = fopen("test.txt","r");

 while(feof(fp) == 0)

 {

 ch=fgetc(fp);

 if(ch == 'a' || ch == 'A' || ch=='e'

 ch=='E' || ch == 'I' || ch == 'i' ||

 ch == 'O' || ch=='o' || ch == 'U' ||

 ch == 'u')

 {

 countV++;

 }

 }

 printf("Count of Vowels=%d",countV);

 fclose(fp);

}

Content of test.txt

Hello, Welcome to C Programming Lectures.

Output

Count of Vowels=12

3) Write a program to copy the content of file to another.

#include<stdio.h>

void main()

{

 FILE *f1,*f2;

 char ch;

 f1 = fopen("test.txt","r");

 f2 = fopen("copy.txt","w");

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

 while(feof(f1) == 0)

 {

 ch=fgetc(f1);

 fputc(ch,f2);

 }

 printf("Successfully Copied");

 fclose(f1);

 fclose(f2);

 }

Content of test.txt

Hello, Welcome to C Programming Lectures.

Output
Successfully Copied

Content of copy.txt

Hello, Welcome to C Programming Lectures.

4) Write a program to merge the content of two files.

#include<stdio.h>

void main()

{

 FILE *f1,*f2,*f3;

 char ch;

 f1 = fopen("file1.txt","r");

 f2 = fopen("file2.txt","r");

 f3 = fopen("merge.txt","w");

 while(feof(f1) == 0)

 {

 ch=fgetc(f1);

 fputc(ch,f3);

 }

 while(feof(f2) == 0)

 {

 ch=fgetc(f2);

 fputc(ch,f3);

 }

 printf("Successfully Merged");

}

Content of file1.txt

Hello, Welcome to C Programming Lectures.

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

Content of file2.txt

C is very easy to learn.

Output
Successfully Merged

Content of merge.txt

Hello, Welcome to C Programming Lectures. C is very easy to learn.

5) Write a program to read numbers from a file and display the largest number.

#include<stdio.h>

void main()

{

 FILE *f1;

 int large,num;

 f1 = fopen("number.txt","r");

 fscanf(f1,"%d",&large); // setting first element as largest element

 while(feof(f1) == 0)

 {

 fscanf(f1,"%d",&num);

 if(large<num)

 {

 large= num;

 }

 }

 fclose(f1);

 printf("Largest element = %d",large);

}

Content of number.txt

15 21 7 29 36 78 67 56 10

Output

Largest element = 78

6) Consider you are a content writer in Wikipedia. You are the person who write the known

facts about APJ Abdul Kalam. After his death, you need to change all is to was. Write a

program to replace all is’ to was’ to a new file.

#include<stdio.h>

#include<string.h>

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

void main()

{

 FILE *f1,*f2;

 char str[30];

 f1 = fopen("apj.txt","r");

 f2 = fopen("new.txt","w");

 fscanf(f1,"%s",str);

 while(feof(f1) == 0)

 {

 if(strcmp(str,"is")==0)

 fprintf(f2,"was A");

 else

 fprintf(f2,"%s ",str);

 fscanf(f1,"%s",str);

 }

 fclose(f1);

 fclose(f2);

 printf("Replaced String Successfully\n");

}

7) Write a program to reverse each content of file to another.

#include<stdio.h>

#include<string.h>

void main()

{

 FILE *f1,*f2;

 char str[30],rev[30];

 int i,j;

 f1 = fopen("test.txt","r");

 f2 = fopen("new.txt","w");

 while(feof(f1) == 0)

 {

 fscanf(f1,"%s",str);

 j=0;

 for(i=strlen(str)-1;i>=0;i--)

 {

 rev[j]=str[i];

 j++;

 }

 rev[j]='\0';

 fprintf(f2,"%s ",rev);

 }

 fclose(f1);

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

 fclose(f2);

}

Content of test.txt

Welcome to C programming

Content of new.txt after execution

emocleW ot C gnimmargorp

8) Write a program to copy the content of a file to another in reverse order.

#include<stdio.h>

void main()

{

 FILE *f1,*f2;

 int count,begin,end;

 char ch,i;

 f1 = fopen("test.txt","r");

 f2 = fopen("new.txt","w");

 // Code to find count of characters in a file.

 begin = ftell(f1);

 fseek(f1, -1, SEEK_END);

end = ftell(f1);

 count = end - begin; // Count of characters.

 printf("Count of characters=%d",count);

 // Copy the content of file in reverse order

 i=-1;

 while (count != -1)

 {

 ch = fgetc(f1);

 fputc(ch, f2);

 i--;

 fseek(f1, i, SEEK_END); // shifts the pointer to the previous character

 count--;

 }

 fclose(f1);

 fclose(f2);

}

9) Write a program to count number of words and lines in a file.

#include<stdio.h>

#include<string.h>

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

void main()

{

 FILE *f1,*f2;

 int countW=0,countL=0;

 char ch;

 f1 = fopen("test.txt","r");

 while (feof(f1) == 0)

 {

 ch = fgetc(f1);

 if(ch == ' ')

 countW++;

 if(ch == '\n')

 countL++;

 }

 printf("Count of words = %d\n",countW);

 printf("Count of Lines = %d",countL);

 fclose(f1);

}

Content of test.txt

Welcome to C programming.

C is very easy to learn

Output

Count of words = 4

Count of Lines = 2

10) Write a program to append some data to already existing file.

#include<stdio.h>

void main()

{

 FILE *f1;

 char str[30];

 f1 = fopen("test.txt","a");

 printf("Enter the string:");

 gets(str);

 fprintf(f1,"%s",str);

 fclose(f1);

}

11) Write a program to display content of file two times without closing the file.

#include<stdio.h>

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

void main()

{

 FILE *fp;

 char ch;

 fp = fopen("test.txt","r");

 while(feof(fp)==0)

 {

 ch=fgetc(fp);

 printf("%c",ch);

 }

 rewind(fp);

 while(feof(fp)==0)

 {

 ch=fgetc(fp);

 printf("%c",ch);

 }

 fclose(fp);

}

Output

Hello, Welcome to C programming. Hello, Welcome to C programming.

12) Write a program to read the details of “n” Employees with following fields – name, empid

and salary and write the details into a file. Then read details from file and display the name

of employee who has highest salary.

#include<stdio.h>

struct Employee

{

 char name[30];

 int empid;

 double salary;

};

void main()

{

 FILE *fp;

 struct Employee e[10],res,temp;

 int i,n;

 fp = fopen("employee.dat","w");

 printf("Enter the limit:");

 scanf("%d",&n);

 printf("Enter the details of Employee\n");

 for(i=0;i<n;i++)

 {

MARIAN ENGINEERING COLLEGE, TRIVANDRUM

 printf("Name:");

 scanf("%s",e[i].name);

 printf("EmpId:");

 scanf("%d",&e[i].empid);

 printf("Salary:");

 scanf("%lf",&e[i].salary);

 fwrite(&e[i],sizeof(e[i]),1,fp);

 }

 fclose(fp);

 fp = fopen("employee.dat","r");

 res.salary=-1.0;

 while(feof(fp) == 0)

 {

 fread(&temp,sizeof(temp),1,fp);

 if(res.salary < temp.salary)

 {

 res = temp;

 }

 }

 printf("Name of Employee with highest Salary:%s",res.name);

}

Output

Enter the limit:2

Enter the details of Employee

Name:Sangeeth

EmpId:101

Salary:10000

Name:Poornima

EmpId:102

Salary:20000

Name of Employee with highest Salary:Poornima

