
MODULE IV

• Introduction to JavaScript and jQuery - The Basics of
JavaScript: Overview of JavaScript, Object Orientation and
JavaScript, General Syntactic Characteristics- Primitives,
Operations, and Expressions, Screen Output and Keyboard
Input, Control Statements, Object Creation and Modification,
Arrays, Functions. Callback Functions, Java Script HTML DOM.
Introduction to jQuery: Overview and Basics.

Overview of JavaScript: Origins

• Originally developed by Netscape

• JavaScript was invented by Brendan Eich in 1995

• Joint Development with Sun Microsystems in 1995

• can be run on any operating systems and almost all web
browsers.

• ECMA-262 edition 3 is the current standard

– Edition 4 is under development

• Supported by Netscape, Mozilla, Internet Explorer

INTRODUCTION

• JavaScript is one of the 3 languages all web
developers must learn:

1. HTML to define the content of web pages

2. CSS to specify the layout of web pages

3. JavaScript to program the behavior of

web pages

JAVASCRIPT FEATURES

• Initially called LIVESCRIPT

• Allows pages to become dynamic & interactive

• Can embedded in a web page or linked in as
an external file

• Used to validate the data on the web page
before submitting it to the server.

• Used to create cookies.

JavaScript Components

• JavaScript can be divided into 3 parts
 Core

– heart of the language

– Including its operators, expressions statements & subprograms

 Client-side
– Collection of objects supporting browser control and user

interaction (mouse clicks, keyboard etc)

Server-side
– Collection of objects that make the language useful on a web

servers

• Server-side JavaScript is used far less frequently
than Client-side JavaScript

Java and JavaScript

Java JavaScript

Supports Object-oriented Programming
Language

Object based Programming Language, its
object model is different from that of java
& C++

Strongly typed language, types are all
known at compile time & operand types
are checked for compatibility

Weakly typed language, Variables need
not be declared, dynamically typed

Objects in java are static in the sense that
their collection of data members &
methods are fixed at compile time

Objects are dynamic – the number of data
members & methods of an object can
change during execution

Java uses the concept of classes and
objects that makes reuse of the code
easier

there is no such thing in JavaScript.

Similarity between java & JavaScript

• Syntax of their expressions , assignment
statements & control statements

Uses of JavaScript

• Provide programming capability at both server & the
client ends of a web connection

• Provide alternative to server-side programming
– Servers are often overloaded

– Client processing has quicker reaction time

• JavaScript can work with forms

• JavaScript can interact with the internal model of the
web page (Document Object Model)

• JavaScript is used to provide more complex user
interface than plain forms with HTML/CSS can provide

Event-Driven Computation

• Users actions, such as mouse clicks and key
presses, are referred to as events

• The main task of most JavaScript programs is
to respond to events

• For example, a JavaScript program could
validate data in a form before it is submitted
to a server

XHTML/JavaScript Documents

• When JavaScript is embedded in an XHTML document, the
browser must interpret it

• Two locations for JavaScript serve different purposes

– JavaScript in the head element will react to user input and
be called from other locations

– JavaScript in the body element will be executed once as
the page is loaded

Object Orientation and JavaScript

• Not an object-oriented programming language

• Object-based language

• Doest not have classes

• Cannot have class based inheritance

• Prototype – based inheritance

• Cannot supports polymorphism

JavaScript Objects (1)

• Objects are collections of properties

• Properties are either data properties or method properties

• Data properties are either primitive values or references to
other objects.

• primitive value is a value that has no properties or methods.

• Primitive values are often implemented directly in hardware
resulting in faster operations on their values

• Root object in JavaScript is Object

• The Object object is the ancestor of all
objects in a JavaScript program

– Object has no data properties, but several method
properties

JavaScript in XHTML

• Directly embedded

<script type=“text/javascript”>

<!--

…Javascript here…

-->

</script>

• Indirect reference

<script type=“text/javascript”

src=“hello.js”/>

– This is the preferred approach

JavaScript identifiers

• Identifiers or names are similar to those of
other common programming languages

• Must begin with a letter, an underscore or a
dollar sign

• No length limitations for identifiers

• Case sensitive

JavaScript reserved words

• 25 reserved words

• Break,case,catch,continue,delete,do,return,sw
itch, for, new, while etc

• Another collection of words is reserved for
future use in Javascript

• Has a large collection of predefined words,
including alert,open ,java & self

JavaScript comments

1. two adjacent slashes(//) appear on a line
,the rest of the line is considered as comment

2. /*…………………*/ (single & multiple line
comments)

Issues in embedding JavaScript in
XHTML document

• There are some browsers still in use
recognize the <script> tag but do not have
JavaScript interpreters

– Simply ignore the contents of the script element &
cause no problems.

• Old browsers does not recognize the script
tag, simply read as text

• So enclose the contents of all script elements
in XHTML comments to avoid this problem

JavaScript in XHTML: CDATA (1)

• The <![CDATA[…]]> block is intended to hold data that
should not be interpreted as XHTML

• Using this should allow any data (including special symbols
and --) to be included in the script

• This, however does not work, at least in Firefox:

<script type=“text/javascript”>

<![CDATA[

…JavaScript here…

]]>

</script>

• The problem seems to be that the CDATA tag causes an
internal JavaScript error

JavaScript in XHTML: CDATA (2)

• This does work in Firefox
<script type=“text/javascript”>

/*<![CDATA[*/

…JavaScript here…

/*]]> */

</script>

• The comment symbols do not bother the XML
parser (only /* and */ are ‘visible’ to it)

• The comment symbols protect the CDATA
markers from the JavaScript parser

Statement Syntax

• Statements can be terminated with a semicolon

• However, the interpreter will insert the semicolon if
missing at the end of a line and the statement seems
to be complete

• Can be a problem:

return

x;

JavaScript Primitives (1)

• A primitive value is a value that has no properties or
methods.

• A primitive data type is data that has a primitive value.

• JavaScript defines 5 types of primitive data types:
 String

 number

 boolean

 undefined

 null

Types.html

JavaScript Primitives (2)

• Primitive values are immutable (they are
hardcoded and therefore cannot be changed).

• if x = 3.14, you can change the value of x. But
you cannot change the value of 3.14.

JavaScript Objects

• In JavaScript, almost "everything" is an object.

• Booleans, Numbers, Strings etc can be objects
(if defined with the new keyword)

• All JavaScript values, except primitives, are
objects.

Object Properties

• The named values, in JavaScript objects, are
called properties.

• Property value

firstName John

lastName Doe

Object Methods (1)

• Methods are actions that can be performed
on objects.

• Object properties can be both primitive
values, other objects, and functions.

• An object method is an object property
containing a function definition.

Object Methods (2)

• Property value

firstName John

lastName Doe

fullName function() {return this.firstName

+ " " + this.lastName;}

• JavaScript objects are containers for named
values, called properties and methods.

Wrapper Objects (1)

• JavaScript includes predefined objects

• that are closely related to the Number, String,
and Boolean types, named Number, String,
and Boolean,

• These objects are called wrapper objects.

Wrapper Objects (2)

• Each contains a property that stores a value of the
corresponding primitive type.

• purpose of the wrapper objects is to provide
 properties and methods that are convenient for use with values of the primitive

types.

 In the case of Number, the properties are more useful; in the case of String,
methods are more useful

• Because JavaScript coerces values between the Number type
primitive values and Number objects and between the String
type primitive values and String objects

• methods of Number and String can be used on variables of
the corresponding primitive types.

The difference between primitives and objects is

shown in the following example.

• prim is a primitive variable
with the value 17

• obj is a Number object
whose property value is 17.

• Figure shows how prim and

obj are stored.

Numeric and String Literals

• Number values are represented internally as
double-precision floating-point values
– Number literals can be either integer or float

– Float values may have a decimal and/or and exponent

• A String literal is delimited by either single or
double quotes
– There is no difference between single and double quotes

– Certain characters may be escaped in strings

• \’ or \” to use a quote in a string delimited by the same quotes

• \\ to use a literal backspace

– The empty string “ ” has no characters

Other Primitive Types

• Null
– A single value, null

– null is a reserved word

– A variable that is used but has not been declared nor been assigned a value
has a null value

– Using a null value usually causes an error

• Undefined
– A single value, undefined

– However, undefined is not, itself, a reserved word

– The value of a variable that is declared but not assigned a value

• Boolean
– Two values: true and false

Declaring Variables

• JavaScript is dynamically typed, that is,
variables do not have declared types
– A variable can hold different types of values at different times during program

execution

• A variable is declared using the keyword var
var counter,index,pi = 3.14159265;

Numeric Operators

• Standard arithmetic
+ * - / %

• Increment and decrement
-- ++

Increment and decrement differ in effect when used before and after a variable

Precedence of Operators (1)

• Precedence rules
 specify which operator is evaluated first when two

operators with different precedence are adjacent in an
expression.

• Associativity rules
 specify which operator is evaluated first when two

operators with same precedence are adjacent in an
expression.

Precedence of Operators (2)

Operators Associativity

++, --, unary - Right

*, /, % Left

+, - Left

>, <, >= ,<= Left

==, != Left

===,!== Left

&& Left

|| Left

=, +=, -=, *=, /=, &&=, ||=, %= Right

The Math Object

• Provides a collection of properties and
methods useful for Number values

• This includes the trigonometric functions such
as sin and cos

• When used, the methods must be qualified, as
in Math.sin(x)

The Number Object

• Properties
– MAX_VALUE

– MIN_VALUE

– NaN

– POSITIVE_INFINITY (special value to represent

infinity)

– NEGATIVE_INFINITY

– PI

• Operations resulting in errors return NaN
(not a number)
– Use isNaN(a) to test if a is NaN

• toString method converts a number to string

String Catenation Operator

• The operator + is the string catenation
operator

• Strings are not stored or treated as array of
characters, rather they are unit scalar values.

• In many cases, other types are automatically
converted to string

Implicit Type Conversion (1)

• JavaScript attempts to convert values in order
to be able to perform operations

• “August “ + 1977 causes the number to be
converted to string and a concatenation to be
performed

• 7 * “3” causes the string to be converted to a
number and a multiplication to be performed

Implicit Type Conversion (2)

• null is converted to 0 in a numeric context,
undefined to NaN

• 0 is interpreted as a Boolean false, all other
numbers are interpreted as true

• The empty string is interpreted as a Boolean
false, all other strings as Boolean true

• undefined, Nan and null are all interpreted as
Boolean false

Explicit Type Conversion

• Explicit conversion of string to number
– Number(aString) eg:- var number=Number(aString);

• parseInt and parseFloat convert the beginning
of a string to integer literal & floating point
literal

String Properties and Methods

• One property: length

 Number of characters in a string is stored in the
length property

var str = “George”;

var len = str.length;

Here len= 6

• Character positions in strings begin at index 0

String Methods

Method Parameters Result

charAt A number Returns the character in the String
object that is at the specified
position

indexOf One-character string Returns the position in the String
object of the parameter

substring Two numbers Returns the substring of the String
object from the first parameter
position to the second

toLowerCase None Converts any uppercase letters in
the string to lowercase

toUpperCase None Converts any lowercase letters in
the string to uppercase

The typeof Operator

• Returns the type of its single operand

• Ie, it returns “number” or “string” or “boolean” for primitive
types

• Returns “object” for an object or null

• Objects do not have types

• If the operand is a variable that has not been assigned a
value,typeof evaluates to “undefined”

• Two syntactic forms

– typeof x

– typeof(x)

– Both are equivalent

Assignment Statements

• simple assignment indicated by =

• Compound assignment with
– += -= /= *= %= …

• a += 7 means the same as

• a = a + 7

4.4 The Date Object

• A Date object represents a time stamp, that is,
a point in time

• A Date object is created with the new
operator
– var today= new Date();

– This creates a Date object for the time at which it was created

The Date Object: Methods
toLocaleString A string of the Date information

getDate The day of the month

getMonth
The month of the year, as a number in the range of 0 to

11

getDay The day of the week, as a number in the range of 0 to 6

getFullYear The year

getTime The number of milliseconds since January 1, 1970

getHours
The number of the hour, as a number in the range of 0

to 23

getMinutes
The number of the minute, as a number in the range of 0

to 59

getSeconds
The number of the second, as a number in the range of

0 to 59

getMilliseconds
The number of the millisecond, as a number in the

range of 0 to 999

Window and Document

• The Window object represents the window in which the
document containing the script is being displayed

• The Document object represents the document being
displayed using DOM

• Window has two properties

– window refers to the Window object itself

– document refers to the Document object

• The Window object is the default object for JavaScript, so
properties and methods of the Window object may be used
without qualifying with the class name

Screen Output and Keyboard Input

• Standard output for JavaScript embedded in a
browser is the window displaying the page in
which the JavaScript is embedded

• write method of the Document object write
its parameters to the browser window

• The output is interpreted as HTML by the
browser

• If a line break is needed in the output, use

The alert Method
• The alert method opens a dialog box with a

message

• The output of the alert is not XHTML, so use new
lines rather than

alert("The sum is:" + sum + "\n");

The confirm Method
• The confirm methods displays a message provided as a

parameter

– The confirm dialog has two buttons: OK and Cancel

• If the user presses OK, true is returned by the method

• If the user presses Cancel, false is returned
var question =

confirm("Do you want to continue this download?");

The prompt Method
• This method displays its string argument in a

dialog box
– A second argument provides a default content for the user entry area

• The dialog box has an area for the user to enter
text

• The method returns a String with the text
entered by the user

name = prompt("What is your name?", "");

Where JavaScript is placed

• most preferred ways to include JavaScript in an HTML file are

as follows −

1) Script in <head>...</head> section.

2) Script in <body>...</body> section.

3) Script in <body>...</body> and <head>...</head> sections.

4) Script in an external file and then include in <head>...</head>

section.

1) Script in <head>...</head> section.
• to have a script run on some event, such as when a user clicks

somewhere (hello1.html)
<html>

<head>

<script type="text/javascript">

function sayHello()

{

alert("Hello World")

}

</script>

</head>

<body>

<input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

2) Script in <body>...</body>
section.

• a script to run as the page loads so that the
script generates content in the page, then the
script goes in the <body> portion of the
document.

<html>

<head>

</head>

<body>

<script type="text/javascript">

document.write("Hello World")

</script>

<p>This is web page body </p>

</body>

</html>

Script in <body>...</body> and
<head>...</head> sections(1)

<html>

<head>

<script type="text/javascript">

function sayHello()

{

alert("Hello World")

}

</script>

Script in <body>...</body> and
<head>...</head> sections(2)

</head>

<body>

<script type="text/javascript">

document.write("Hello World")

</script>

<input type="button" onclick="sayHello()" value="Say Hello" >

</body>

</html>

External Scripts

• Place the code in a separate file

• Updation is easy

• <script > tag is not needed

• .js extension

4.6 Control Statements

• A compound statement in JavaScript is a
sequence of 0 or more statements enclosed in
curly braces
– Compound statements can be used as components of control statements

allowing multiple statements to be used where, syntactically, a single
statement is specified

• A control construct is a control statement
including the statements or compound
statements that it contains

4.6.1 Control Expressions

• A control expression has a Boolean value
– An expression with a non-Boolean value used in a control statement will have

its value converted to Boolean automatically

• Comparison operators
 == != < <= > >=

 === compares identity of values or objects

 3 == ‘3’ is true due to automatic conversion

 3 === ‘3’ is false (checking the data type also)

• Boolean operators
&& || !

• Warning! A Boolean object evaluates as true
– Unless the object is null or undefined

4.6.2 Selection Statements

• The if-then and if-then-else are similar to that
in other programming languages, especially
C/C++/Java

4.6.3 switch Statement Syntax

switch (expression)

{

case value_1:

// statement(s)

case value_2:

// statement(s)

...

[default:

// statement(s)]

}

switch Statement Semantics

• The expression is evaluated

• The value of the expressions is compared to
the value in each case in turn

• If no case matches, execution begins at the
default case

• Otherwise, execution continues with the
statement following the case

• Execution continues until either the end of the
switch is encountered or a break statement
is executed

4.6.4 Loop Statements

• Loop statements in JavaScript are similar to
those in C/C++/Java

• While
while (control expression)

statement or compound statement

• For
for (initial expression; control expression; increment expression)

statement or compound statement

• do/while
do statement or compound statement

while (control expression)

• Day2.html

• Sum10.html

• Palicheck.html

4.7 Object Creation and
Modification

• The new expression is used to create an object
– This includes a call to a constructor

– The new operator creates a blank object, the constructor creates and
initializes all properties of the object

• Properties of an object are accessed using a
dot notation: object.property

• Properties are not variables, so they are not
declared

• The number of properties of an object may
vary dynamically in JavaScript

4.7 Dynamic Properties

• Create my_car and add some properties
// Create an Object object

var my_car = new Object();

// Create and initialize the make property

my_car.make = "Ford";

// Create and initialize model

my_car.model = "Contour SVT";

• The delete operator can be used to delete a
property from an object
– delete my_car.model

4.7 The for-in Loop

• Syntax
for (identifier in object)

statement or compound statement

• The loop lets the identifier take on each
property in turn in the object

• Printing the properties in my_car:
for (var prop in my_car)

document.write("Name: ", prop, "; Value: ",

my_car[prop], "
");

• Result:
Name: make; Value: Ford

Name: model; Value: Contour SVT

4.8 Arrays

• Arrays are lists of elements indexed by a
numerical value

• Array indexes in JavaScript begin at 0

• Arrays can be modified in size even after they
have been created

4.8 Array Object Creation (1)

• Arrays can be created using the new Array
method
– new Array with one parameter creates an empty array of the specified

number of elements

• new Array(10)

– new Array with two or more parameters creates an array with the specified
parameters as elements

• new Array(10, 20)

• Var my_list = new Array(1,2,”three”,”four”);

• Usual way to create any object is with new operator & a call to a constructor

• In the case of arrays, the constructor is named Array:

4.8 Array Object Creation (2)

• Literal arrays can be specified using square
brackets to include a list of elements

var a _list = [1, 2, “three”, “four”];

• Elements of an array do not have to be of the
same type

4.8 Characteristics of Array Objects (1)

• Lowest index of every JavaScript array is zero

• The length of an array is one more than the
highest index to which a value has been
assigned or the initial

• my_list[47] = 2222;

• New length of my_list will be 48

4.8 Characteristics of Array
Objects (2)

• Assignment to an index greater than or equal
to the current length simply increases the
length of the array

• Only assigned elements of an array occupy
space
– Suppose an array were created using new Array(200)

– Suppose only elements 150 through 174 were assigned values

– Only the 25 assigned elements would be allocated storage, the other 175
would not be allocated storage

4.8 Array Methods

• join

• reverse

• sort

• concat

• slice

4.8.1 join method

• Converts all elements of an array to strings &
catenates them into a single string

• If no parameter is provided to join, the values
in the new string are separated by commas

• Join.html

4.8.2 Sort method

• JavaScript array sort() method sorts the
elements of an array.

• Sort.html

4.8.3 Reverse Method

• Reverses the order of the elements of an array
ie, the first becomes the last, and the last
becomes the first.

• Reverse.html

4.8.4 concat

• Javascript array concat() method returns a
new array comprised of this array joined with
two or more arrays.

• Concat.html

4.8.4 Slice

• Extracts a section of an array and returns a
new array.

• Slice.html

4.8 Dynamic List Operations (1)

• push
– Add to the end

• pop
– Remove from the end

• shift
– Remove from the front

• unshift
– Add to the front

4.8 Dynamic List Operations (2)

• Var list = [“ramu”, “rani”, “raj”];

var deer = list.pop(); // deer is “raj”

list.push(“raj”); // this puts “raj” back to list

• Shift & unshift remove & add an element to
the beginning of an array

var deer = list.shift(); // deer is now “ramu”

list.unshift(“ramu”); // this puts “ramu” back
to list

4.9 Function Fundamentals (1)

• Function definition syntax
– A function definition consist of a header followed by a compound statement

– A function header:

• function function-name(optional-formal-parameters)

• return statements
– A return statement causes a function to cease execution and control to pass to

the caller

– A return statement may include a value which is sent back to the caller

• This value may be used in an expression by the caller

– A return statement without a value implicitly returns undefined

4.9 Function Fundamentals (2)

• Function call syntax
– Function name followed by parentheses and any actual

parameters

– Function call may be used as an expression or part of an
expression

• Functions must defined before use in the page
header

4.9 Functions are Objects

• Functions are objects in JavaScript

• Functions may, therefore, be assigned to
variables and to object properties

– Object properties that have function values are
methods of the object

Example

function fun()

{

document.write("This surely is fun!
");

}

ref_fun = fun;// Now, ref_fun refers to the fun

object

fun(); // A call to fun

ref_fun(); // Also a call to fun

4.9 Parameters

• Parameters named in a function header are
called formal parameters

• Parameters used in a function call are called
actual parameters

• Parameters are passed by value
– For an object parameter, the reference is passed, so the function body can

actually change the object

– However, an assignment to the formal parameter will not change the actual
parameter

callback function

• is a function passed into another function as
an argument, which is then invoked inside the
outer function to complete some kind of
routine or action.

function greeting(name)

{

alert('Hello ' + name);

}

function processUserInput(callback)

{

var name = prompt('Please enter your name.');
callback(name);

}

processUserInput(greeting);

DOM

• Document Object Model

• When a web page is loaded, the browser
creates a Document Object Model of the
page.

• Used to acess information contained in HTML
document such as forms & build such
documents dynamically.

• is a W3C (World Wide Web Consortium)

• Defines a standard for accessing documents

W3C DOM

• Seperated into 3 different parts

i) Core DOM – std model for all document
types

ii) XML DOM

iii) HTML DOM

HTML DOM model is constructed as a tree
of Objects:

jQuery Introduction

• jQuery is a JavaScript Library.

• greatly simplifies JavaScript programming.

• is easy to learn.

• jQuery is a lightweight, "write less, do more",
JavaScript library.

• The purpose of jQuery is to make it much
easier to use JavaScript on your website.

• jQuery takes a lot of common tasks that
require many lines of JavaScript code to
accomplish, and wraps them into methods
that we can call with a single line of code.

• jQuery also simplifies a lot of the complicated
things from JavaScript, like AJAX calls and
DOM manipulation.

• The jQuery library contains the following
features:

• HTML/DOM manipulation

• CSS manipulation

• HTML event methods

• Effects and animations

• AJAX

• Utilities

Why jQuery?

• There are lots of other JavaScript frameworks
out there, but jQuery seems to be the most
popular, and also the most extendable.

• Many of the biggest companies on the Web
use jQuery, such as:

• Google

• Microsoft

• IBM

• Netflix

jQuery Syntax

• Basic syntax is: $(selector).action()

• A $ sign to define/access jQuery

• A (selector) to "query (or find)" HTML
elements

• A jQuery action() to be performed on the
element(s)

Examples:

• $(this).hide() - hides the current element.

• $("p").hide() - hides all <p> elements.

• $(".test").hide() - hides all elements with
class="test".

• $("#test").hide() - hides the element with
id="test“.

The Document Ready Event

• all jQuery methods are inside a document
ready event:

• allows us to execute a function when the
document is fully loaded

• $(document).ready(function()

{

// jQuery methods go here...

});

Commonly Used jQuery Event
Methods

• click()

• The function is executed when the user clicks
on the HTML element.

• $("p").click(function(){
$(this).hide();

});

• dblclick()

$("p").dblclick(function(){
$(this).hide();

});

• mouseenter()

• The function is executed when the mouse
pointer enters the HTML element:

• Example

• $("#p1").mouseenter(function()

{
alert("You entered p1!");

});

• mouseleave()

• The function is executed when the mouse
pointer leaves the HTML element:

• Example

• $("#p1").mouseleave(function(){
alert("Bye! You now leave p1!");

});

