

Preset and Clear of counters

Preset will make the output high irrespective of input conditions if taken low. Clear will make

the output low irrespective of input conditions if taken low. If not in use both preset and

clear pins are tied to Logic High.

Synchronous Counter

In the previous Asynchronous binary counter, we saw that the output of one counter stage is

connected directly to the clock input of the next counter stage and so on along the chain. The

result of this is that the Asynchronous counter suffers from what is known as “Propagation

Delay” in which the timing signal is delayed a fraction through each flip-flop.

However, with the Synchronous Counter, the external clock signal is connected to the clock

input of EVERY individual flip-flop within the counter so that all of the flip-flops are clocked

together simultaneously (in parallel) at the same time giving a fixed time relationship. In other

words, changes in the output occur in “synchronisation” with the clock signal. The result of this

synchronisation is that all the individual output bits changing state at exactly the same time in

response to the common clock signal with no ripple effect and therefore, no propagation delay.

Modulo 10 or Decade or BCD Counter

Design mod-10 synchronous counter using JK Flip Flops.Check for the lock out condition.If

so,how the lock-out condition can be avoided? Draw the neat state diagram and circuit diagram

with Flip Flops.

3) Lock out condition:

• In the above counter the logic states 1010, 1011, 1100, 1101, 1110 and 1111 are not used.

If by chance, the counter happens to find itself in any one of the unused states, its next

state would not be known. It may just be possible that the counter might go from one

unused state to another and never arrive at a used state. A counter whose unused states

have this feature is said to suffer from LOCK OUT.

• To avoid lock out and make sure that at the starting point the counter is in its initial state

or it comes to its initial state within few clock cycles, external logic circuitry is to be

provided and so we design the counter assuming the next state to be the initial state, from

each unused states.

Sequential Machines

We know that synchronous sequential circuits change affect their states for every positive 0r

negative transition of the clock signal based on the input. So, this behavior of synchronous

sequential circuits can be represented in the graphical form and it is known as state diagram.

A synchronous sequential circuit is also called as Finite State Machine FSM, if it has finite

number of states. There are two types of FSMs.

• Mealy State Machine

• Moore State Machine

Now, let us discuss about these two state machines one by one.

Mealy State Machine

A Finite State Machine is said to be Mealy state machine, if outputs depend on both present

inputs & present states. The block diagram of Mealy state machine is shown in the following

figure.

As shown in figure, there are two parts present in Mealy state machine. Those are

combinational logic and memory. Memory is useful to provide some or part of previous outputs

and present states as inputs of combinational logic. So, based on the present inputs and present

states, the Mealy state machine produces outputs. Therefore, the outputs will be valid only at

positive or negative transition of the clock signal.

Mealy Diagram –

In the above figure, there are three states, namely A, B & C. These states are labelled inside the

circles & each circle corresponds to one state. Transitions between these states are represented

with directed lines. Here, 0 / 0, 1 / 0 & 1 / 1 denotes input / output. In the above figure, there

are two transitions from each state based on the value of input, x.

In general, the number of states required in Mealy state machine is less than or equal to the

number of states required in Moore state machine. There is an equivalent Moore state machine

for each Mealy state machine.

Moore State Machine

A Finite State Machine is said to be Moore state machine, if outputs depend only on present

states. The block diagram of Moore state machine is shown in the following figure.

As shown in figure, there are two parts present in Moore state machine. Those are

combinational logic and memory. In this case, the present inputs and present states determine

the next states. So, based on next states, Moore state machine produces the outputs. Therefore,

the outputs will be valid only after transition of the state.

The state diagram of Moore state machine is shown in the following figure.

In the above figure, there are four states, namely A, B, C & D. These states and the respective

outputs are labelled inside the circles. Here, only the input value is labeled on each transition. In

the above figure, there are two transitions from each state based on the value of input, x.

In general, the number of states required in Moore state machine is more than or equal to the

number of states required in Mealy state machine. There is an equivalent Mealy state machine

for each Moore state machine. So, based on the requirement we can use one of them.

Moore Machine –

1. Output depends only upon present state.

2. If input changes, output does not change.

3. More number of states are required.

4. There is more hardware requirement.

5. They react slower to inputs(One clock cycle later)

6. Synchronous output and state generation.

7. Output is placed on states.

8. Easy to design.

Mealy Machine –

1. Output depends on present state as well as present input.

2. If input changes, output also changes.

3. Less number of states are required.

4. There is less hardware requirement.

5. They react faster to inputs.

6. Asynchronous output generation.

7. Output is placed on transitions.

8. It is difficult to design.

VHDL Introduction

VHDL stands for very high-speed integrated circuit hardware description language. It is a

programming language used to model a digital system by dataflow, behavioral and structural

style of modeling.

Describing a Design

In VHDL an entity is used to describe a hardware module. An entity can be described using,

• Entity declaration

• Architecture

• Configuration

• Package declaration

• Package body

Entity Declaration

It defines the names, input output signals and modes of a hardware module.

Syntax −

entity entity_name is

 Port declaration;

end entity_name;

An entity declaration should start with ‘entity’ and end with ‘end’ keywords. The direction will

be input, output or inout.

In Port can be read

Out Port can be written

Inout Port can be read and written

Buffer Port can be read and written, it can have only one source.

Architecture −

Architecture can be described using structural, dataflow, behavioral or mixed style.

Syntax −

architecture architecture_name of entity_name

architecture_declarative_part;

begin

 Statements;

end architecture_name;

Here, we should specify the entity name for which we are writing the architecture body. The

architecture statements should be inside the ‘begin’ and ‘énd’ keyword. Architecture declarative

part may contain variables, constants, or component declaration.

Data Flow Modeling

In this modeling style, the flow of data through the entity is expressed using concurrent

(parallel) signal. The concurrent statements in VHDL are WHEN and GENERATE.

Besides them, assignments using only operators (AND, NOT, +, *, sll, etc.) can also be used to

construct code.

Finally, a special kind of assignment, called BLOCK, can also be employed in this kind of code.

In concurrent code, the following can be used −

• Operators

• The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN);

• The GENERATE statement;

• The BLOCK statement

Behavioral Modeling

In this modeling style, the behavior of an entity as set of statements is executed sequentially in

the specified order. Only statements placed inside a PROCESS, FUNCTION, or PROCEDURE

are sequential.

PROCESSES, FUNCTIONS, and PROCEDURES are the only sections of code that are

executed sequentially.

However, as a whole, any of these blocks is still concurrent with any other statements placed

outside it.

One important aspect of behavior code is that it is not limited to sequential logic. Indeed, with

it, we can build sequential circuits as well as combinational circuits.

The behavior statements are IF, WAIT, CASE, and LOOP. VARIABLES are also restricted and

they are supposed to be used in sequential code only. VARIABLE can never be global, so its

value cannot be passed out directly.

Structural Modeling

In this modeling, an entity is described as a set of interconnected components. A component

instantiation statement is a concurrent statement. Therefore, the order of these statements is not

important. The structural style of modeling describes only an interconnection of components

(viewed as black boxes), without implying any behavior of the components themselves nor of

the entity that they collectively represent.

In Structural modeling, architecture body is composed of two parts − the declarative part

(before the keyword begin) and the statement part (after the keyword begin).

Logic Operation – AND GATE

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

VHDL Code:

Library ieee;

use ieee.std_logic_1164.all;

entity and1 is

 port(x,y:in bit ; z:out bit);

end and1;

architecture virat of and1 is

begin

 z<=x and y;

end virat;

Logic Operation – OR Gate

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

VHDL Code:

Library ieee;

use ieee.std_logic_1164.all;

entity or1 is

 port(x,y:in bit ; z:out bit);

end or1;

architecture virat of or1 is

begin

 z<=x or y;

end virat;

VHDL Code for a Half-Adder

VHDL Code:

Library ieee;

use ieee.std_logic_1164.all;

entity half_adder is

 port(a,b:in bit; sum,carry:out bit);

end half_adder;

architecture data of half_adder is

begin

 sum<= a xor b;

 carry <= a and b;

end data;

VHDL Code for a Full Adder

Library ieee;

use ieee.std_logic_1164.all;

entity full_adder is port(a,b,c:in bit; sum,carry:out bit);

end full_adder;

architecture data of full_adder is

begin

 sum<= a xor b xor c;

 carry <= ((a and b) or (b and c) or (a and c));

end data;

