Magnetic Measurements: Measurement of flux and permeability flux meter - hall effect Gaussmeter - BH curve and permeability measurement - hysteresis measurement- ballistic galvanometer -principle- determination of BH curve - hysteresis loop. Lloyd Fisher square - measurement of iron losses
Measurement of rotational speed using proximity sensors and optical sensors.

Determination of flux Density/flux.
The measurement of flux density inside a specimen can be done by minding a Search wool over the specimen. This search coil is known as a "Bcoil". This search will is then connected to a ballistic galvanometer or to a flurmetu.

The ring specimen is wound with a magnetizing minding which carries a current I. A search oil of convenient number of tuns is wound on the specimen and connected
through a resistance and calibrating coil, to a ballistic galvanometer as shown in figure.

The wisent through the magnetizing will is reversed and therefore the flux linkages of the search will change inducing an emf in it. This emf sends a current though the ballistic galvanometer causing it to deflect.

Let
$\phi \rightarrow$ flux linking the search wil
$R \rightarrow$ resistance of the ballistic galvanometer archit.
$N \rightarrow$ Number of turns in the search will
$t \rightarrow$ time taken to reveres the flux.

Average emf induced in the Search will

$$
\begin{aligned}
& e=N \frac{d \phi}{d t} \quad ; \quad \frac{d \phi}{d t}=\frac{2 \pi}{t} \\
& e=N \cdot \frac{2 \pi}{t}
\end{aligned}
$$

Aluage curent through the ballistic galvanometer is

$$
i=\frac{2 N \phi}{R t}
$$

Charge parsing is

$$
Q=\text { it }=\frac{2 N \phi}{R}
$$

Let θ_{1} be the theow of galvanometer and $k q$ be the constanst of galvanometer exprued in coulomb per unit deflection. charge indicated by ballistic galvanometer.

$$
=k_{q} \theta_{1}
$$

$$
\begin{aligned}
& Q=\frac{\frac{2 N \phi}{R}}{} \begin{array}{r}
\frac{2 N \phi}{R}=K q \theta_{1} \\
f \ln x
\end{array}=\frac{R K q \theta_{1}}{2 N}
\end{aligned}
$$

In a uniform field and with search will tuns at night angles to the flux density vector We have flux density

$$
B=\frac{\operatorname{slux}}{\text { area }}=\frac{d}{A_{s}}=\frac{R K q \theta_{1}}{2 N A_{s} .} \quad \text { As } \rightarrow \begin{gathered}
\text { closs-sectional } \\
\text { area of } \\
\text { specimen. }
\end{gathered}
$$

correction for air flux.

The search wii is usually of larger. area than the specimen and thus the flux linking with the search coil is the sum of the flux existing in the specimen and the flux which is present in the air space between the speamen and search coil

$$
\begin{aligned}
& \text { value of flux }=\left\{\begin{array}{l}
\text { truevalue of } \\
\text { flux in the } \\
\text { specimen }
\end{array}\right\}+\left\{\begin{array}{l}
\text { flux in the } \\
\text { air space } \\
\text { between } \\
\text { specimen } \\
\text { seachuoil }
\end{array}\right\} \\
& B^{\prime} A_{S}=B A_{S}+\mu_{0} H\left(A_{C}-A_{S}\right) \\
& B=B^{\prime}-m O H\left[\frac{A C}{A S}-1\right]
\end{aligned}
$$

$B^{\prime} \rightarrow$ observed [or appaunt] value of flux density wb/m²
$B \rightarrow$ true value of flux density in specimen $\omega b / m^{2}$

Determination of B.H curve
There are two methods by which B-H curve can be obtained for the magnetic Materia specimen.
(i) Method of Reversal
(ii) Step by step method.
(1) Method of Reversal.

For the determination of B-H curve of a ring shaped specimen whose dimension are s Search ayes of thin tape is put on the
by wax is cuound over the tape. Another layers of tape is put opes. search will and the magnetizing winding is mound over this tape. The test circuit is shown in fig.
Procedure
\rightarrow first of all the specimen is demagnetised and then the magnetising current I is set to its lovertiv, value.
\rightarrow The Ballistic galvanometer key ' k ' is closed and reversing switch ' s is operated about twenty times backward and forward. This is done to bring the specimen into a reproducible cyclic magnetic state.
\rightarrow Key K is now opened and the value of the flue colusponding to this value of H is meas wed by reversing the switch s and noting the deflection of galvanometer.
\Rightarrow The change in flux, measured by the galvanometer when the switch S is quickly reveled will be trice the flux in the specimen coresponding to the value of H is applied. Thous value of H can be obtained as

$$
H=\frac{N I_{i}}{l}
$$

Whee
$N \rightarrow$ Number of tues on the magnesting sing.
$I_{1} \rightarrow$ Lousponding magnetising curent.
$\ell \rightarrow$ Mean ciecumfeunce length of specimen in m
\rightarrow while the flux density B is obtained by dividing the flux measured by the area of cross-Section of speciemen
\rightarrow The procedure is repeated for the different value of H by incuasing H upto the maximum testing point value. The graph of B against H gives the required B-H curve for the specimen
(ii) Step by step method

The ditumination of BH curve can also be wed by the istep-by step method. The special. feature of this method is that thees is no reversal of magnetising current. The civmit for this test is shown in figure.
brogue The magnetising cueent is supplied though a potential divide. potential divider has Several tapping points the resistanus being chosen that the value of the magnetising current and the for le H is incrand on decreased th

\rightarrow This specimen is completely demagnetised before starting the test.
\rightarrow The switch S_{1} is closed with switch S_{2} at tapping. Due to this the will be some change in the flux. hence the ut will be increase in the flux density from o to B_{1}.
\rightarrow This value can be obtained by obtained by observing the deflection of the ballastic galvanometer The value of the loresponding magnetising force H_{1} may be calculated from the value of cureent flowing in the magnetising winding at tapping 1.
\rightarrow 'The magnetising. force is then incuared suddenly to H_{2} by instantaneously changing the position of switch S_{2} from tapping 1 to tapping 2 and the coresponding inceaus in flux density determined from the galvanometer.
\rightarrow The flux density B_{2} correspond to magnetising force H_{2} will be equal to B_{1} plus inceard. flux density. The peoceduce is repeated for various tapping till maximum value of H is achieved. The graph of B against H is then. plotted which is nothing but the B-H wive for the specimen under test. This is shown in figure below
below. deport numb a do times parvom

Determination of Hysteeisis Poop
Thee e are two methods for determination of hystexisis loop of a magnetic material Sperm
(i) Step by. Step method
(ii) Method of eiveesal.
(i) step by step method

The determination of Hysteresis loop this method is dons by simply contin determination of B-H curve.

After reaching the point of maximum Hie , when switch S_{2} is at tapping 10 , the magnetising current is next eiduud, in step to zee by moving switch S_{2} down through the tapping point. $9,8,7, \ldots, 3,2,1$. After reduction of magnetisincs force to zero, negative value of H are obtained by reversing the supply to potential divides and then moving the switch S_{2} up again in order $1,2,3 \ldots 8,9,10$.
(ii) Method of Reversal.

This test is done by means of a number of steps, but the change in flux density measured at each step is the change from the maximum value tim down to some laue value. But be for the next step is conneced the ion specimen is pared through the remainder of the cycle of magnetisation back to the flux density t Bm. Thus the cyclic state of magnetisation is preserved.

The connection, fou the method of reversals are shown in fig.

Procedure
\rightarrow The value of magnetising force $H_{\text {max }}$ required to Produce flux density' Bax to be wed during the test is obtained from the B.H curve of the Specimen
\rightarrow The resistance $R_{2} \$ R_{1}$ ale adjusted so that the magnetising current is such that this value of H (ie H_{m}) is obtained when switch S_{2} is in off position
\rightarrow The resistance R_{1} is adjusted so that a convenient deflection of galvanometer is obtained when the maximum value of magnetising force is revered.
\rightarrow Resistance R_{3} is adjusted to such a value that a suitable reduction of the cureent in the magnetising winding is obtained whir the resistance is brought into the circuit.
\rightarrow The revesing switch $R S_{2}$ is placed on contacts $1,1^{\prime}$ and the ballistic galvanometer is connected to the circuit by opening short circuiting key k.

The value of $B_{m a x}$ is detomined coresponding to Hoax from the deflection of galvanometer. observed on levering switch RS_{2} and 'point A ' on the hystersis loop is obtained the magnetising
winding and galvanometer circuits R_{3} is a Variable shunting resistance, which is connected aleoss the magnetising winding by means of switch thus reducing the magnetising cureent from its maximum value down to any desired value depending upon the value of R_{4}.
Now switch S_{2} is quickly thrown over from off position to contact of, thus shunting the magnetising winding with resistance R_{3}.

The magnetising force is thus reduced to H_{c} '. The coresponding reduction is the value of flux density $\triangle B$ can be known from the galvanometer deflection and thus Point cis located on the hystersis loop.
The galvanometer is then short circuited by closing $k e y k$ and reversing switch $R S_{2}$ is revered to $2,2^{\prime}$. Switch ρ_{2} is then opened and switch RS_{2} moved back again to contact 1,1'
, This procedure pauses the specimen through the cycle of magnetisation and back to point. A.

The specimen is now eddy for the next. Step in the test. The part AD of the loop is obtained by adjusting the shunting resistance R_{3} to give different reduced values of H and determining Cousponding reduction ing B.

To obtain part DEF of the loop suited $R S_{2}$ is palced on contact 1. 1' with K is closed and S_{2} is off position. Now place switch S_{2} on contact ' open the key k and rapidly revere $R S_{2}$ to contact 2, 2'.

This calces the magnetising force to change from ${ }^{+} H_{m}$ to $-H_{k}$. From the throw of the galvanometer change in flux density ΔB^{\prime} can be calculated.

Thus point k on the hysteresis loop can be located. The magnetisation of specimen is brought back to point A by revesing switch $k s_{2}$ on to contact 1.1' with key k closed.

By continuing this Ploceduce, other points on part DEF of the hystersis loop are obtained Thus part ADEF of the loop can be traced.

The part FGLA of the loop may be. Obtained by drawing in the everle of part $A D E F$ as the two halves ace idintial.

Hystesis Lop

Measurement of Ironlosur.

The AC magnetic testing is carried out.
for the following purpose.
(i) To determine the ironloses in magnetic material e at different values of flux density and frequency.
(ii) To seperate two components of iron losses ie, eddy current losses and hystesis loner.
The following methods are need to measure iron loves in ferromagnetic materials.
(i) Wattmeter method
(ii) Bridge method
(iii) Potentiometer method
i) Wattmeter method

This method is most commonly used for measurement of iron loss in strip (Sheet) Material. The strip material to be tested is assembled as a closed magnetic cirait in the form of a square. Therefore this arrangement is known as 9 magnetic square

The are two common forms of there magnetic square
(i) Epstein square
(ii) Lloyd ~ Fisher Square

Lloyd-Fisher Square.
This is the most commonly und magnetic square and therefore it is described in greatordetails. The strips una are usually 0.25 m long and 50 to 60 mm wide. There Steps are built up into four stacks. Each stack is made up of two types of strips one cuts in the direction of rolling and the other cut perpendicular to the direction of rolling.

The stacks or steps are placed inside four similar magnetising coils of large crosssectional area. These four coils are connected in Series to form the primary, winding.

Each magnetising coil has two similar Single layer wits underneath it. They are called secondary wits.

Thus in a magnetic square there are eight secondary coils. Thee secondary wills are. connected in series in groups of four, one from each cole, to form two separate secondary winding

The ends of strips project beyond the magnetising wills. The strips are so arranged that the plane of each strip is perpendicular to the plane of the square. The magnetic circuit is completed by bringing the four stacks together in the form of a square and joining them at the corners.

The corner joints, are made by a set of standard right angled corner piece as shown in fig

The corner pieces are of the same material as strips or at least a material having the same magnetic properties. There is an overlapping of corner piece and strips at the corners due to which ceoss-Section of iron s doubled at the corners.

The measured loss has to be corrected for the loss in the corner pieces.

Advantages

(i) This square gives rather more reliable results than Epstin squab, in care Allowance for corner pieces is known with adequate accuarcy.
(ii) The le of corner pieces in this type of square makes it superior for testing anistropic materials.

Set cup for the test.

Figure shows the connection diagram for finding the total iron loss by wattmeter method.
\rightarrow The test specimen is weighted before assembly and its leoss-Sectional area is determined.
\rightarrow The primary winding is connected the weeent. coil of the wattmeter. The pressure coil of the wattmeter is connected to the one of the secondary windings.
\rightarrow The test specimen has two secondary winding S_{1} and S_{2}. S_{1} is connected to the pressure coil of the wattmeter through switch K_{2}.
$\rightarrow S_{2}$ is to an electrostatic voltmeter or an. electrodynamic voltmeter of very high impedance. The supply frequency is adjusted to the correct value.
\rightarrow The voltmeter applied to the primary winding is adjusted till the magnetising cureent is adjuste to gives the required value of Bax. The readings of the wattmeter and voltmeter are observed.
Theory
The electeostatic voltmeter connected across secondary winding S_{2} measures the ins value of induced voltage.
The value of induced voltage is
where

$$
\begin{aligned}
E & =4 \mathrm{~K}_{f} \phi_{m} f N_{2} \\
& =4 \mathrm{~K}_{f} B_{\text {max }} A_{s} f N_{2}=4.44 B_{\text {max }} A_{S} f N_{2} .
\end{aligned}
$$

$\phi_{\text {max }} \rightarrow$ Maximum value of flux. ; $w b$
$B_{\text {max }} \rightarrow$ Maximum flux density; wb/mi2 $k_{f} \rightarrow$ form factor [1.11 for sinusoidal wave]
$\mathrm{A}_{9} \rightarrow$ Cross-Section of Specimen i m^{2}.
$f \rightarrow$ frequency ; H_{3}.
$N_{2} \rightarrow$ Number of turns on the Sccondary winding.

$$
\therefore B_{\text {max }}=\frac{E}{4 \mathrm{~K}_{f} A_{s} f N_{2}}=\frac{E}{4 \cdot 44 \mathrm{~A}_{s} f N_{2}}
$$

The expression may nd to be lorected, especially is high values of Bmax, for the fact that the will S_{2} encloses some air flux as well as the flux in the specimen / Sample, since the cross-sectional area of the coil must be greater than that of Specimen its If.

Let
$A_{c} \rightarrow$ Closs-Sectional area of will
$A_{S} \rightarrow$ Closs-Sectional area of specimen.
$H_{\text {max }} \rightarrow$ Maximum magnetising for.
Bax \rightarrow Actual maximum flux density in the specimen.
Total flux within the coil is
$B_{\text {max }} A_{s}=B_{\text {max }}^{\prime} \cdot A_{s}+\mu_{0} H_{\text {max }}\left[A_{c}-A_{s}\right]$

$$
B_{\text {max }}=B_{\text {max }}^{\prime}-1_{0} H_{\text {max }}\left[\frac{A_{c}}{A_{s}}-1\right]
$$

Pome loss in iron
$P_{i} \rightarrow$ Total iron Loss, w
$P \rightarrow$ wattmeter reading, W
$V \rightarrow$ voltage applied to wattmeter voltage will.
$E \rightarrow$ Voltage reading
$\gamma_{p} \rightarrow$ resistance of wattmeter pressure wii, Ω
$\gamma_{C} \rightarrow$ resistance of coil $8_{1}, \Omega$
Ip meet in the premesure coil civil; A.
then

$$
\begin{aligned}
E & =I_{p}\left(r_{p}+r_{c}\right) \\
V & =I_{p} r_{p} \\
P_{i} & =P \cdot \frac{E}{V} \\
& =P\left[\frac{I_{p}\left(r_{p}+r_{c}\right)}{I_{p} r_{p}}\right] \\
& =P\left[\frac{r_{p}+r_{c}}{r_{p}}\right] \\
& =P\left[1+\frac{r_{c}}{r_{p}}\right]
\end{aligned}
$$

$$
I_{p} 2\left[r_{p}+r_{c}\right]=\left[\frac{E}{r_{p}+r_{c}}\right]^{2}\left(r_{\rho}+\gamma_{c}\right]
$$

Total copper loss in secondary winding $=\frac{E^{2}}{\lambda_{p}+1 C}$
Total iron loss in the specimen, $P i=\frac{P E}{V}-\frac{E^{2}}{\left(x_{p}+r_{c}\right)}$

$$
P_{i}=P\left[1+\frac{r_{c}}{r_{p}}\right]-\frac{E^{2}}{r_{p}+r_{c}} \text {; watt }
$$

\rightarrow Specific iron loss ie, iron loss perky can be calculated by dividing the total inon losses by the weight of the specimen.
\rightarrow The hysterisis and eddy cement component of the losses can be graphically determined from the results of power measurement such as the at different frequencies.

Flux meter
The flux meter is a special type of Ballistic Galvanometer in which the controlling torque is very small and electeanagntic damping is high.
construction of fluxmitue
figure.
The constuection of a fluxmeter is shown in

A coil of small closs-section is
Suspended from a spring support by means of a single silk thread. The cal moves in the hallow gap of a permanent magnet. There ale no conteol springs.

The current is led into the will with, the help of a very loose helices of very thin annealed silver strips. The controlling is thus reduced to minimum. The wil is formorles and the air friction damping is negligible.
Operation of fluxmeter:
The terminals of fluxmeter are connected to a search will as shown in figure.

flux meter with search wii
The flux linking with the search coil is changed either by removing the will from the magnetic field or by reversing the field. Due to the change in the value of flux linking with th seach coll an emf is induced in it.

This emt sends a current through the flux meter which deflects through an angle depending upon the change in the value of flux linkages.

The insterment will deflects during the period the flux linkages change but as soon as the change Owes tine coil stops, due to the high electromagnetic damping in the circuit. This high electromagnetic damping is obtained by having a low resistances of the circuit comprising the lux metes and search will.
Theory of Plus melee
Let
$N \rightarrow$ Number of tens on the search will.
$R_{e,} L_{C} \rightarrow$ Resistance and Inductance of the search col
$R_{f}, L_{f} \rightarrow$ Resistance and Inductance of flux meter.
$\phi \rightarrow$ flux linking with the search coil
$i \rightarrow$ current is the circuit at any instant.
$\theta \rightarrow$ deflection of the instrument at any interment

Equation of motion is

$$
T_{j}+T_{D}+T_{c}=T_{d}
$$

$T_{j} \rightarrow$ Torque due to in er tia
$T_{D} \rightarrow$ Torque due to damping [damping torque]
$T_{d} \rightarrow$ deflection torque.
$T_{C} \rightarrow$ controlling torque.

$$
\begin{align*}
& T_{j}=\frac{J d^{2} \theta}{d t^{2}} \\
& T_{D}=D \frac{d \theta}{d t} \\
& T_{C}=K_{\theta} \\
& T_{d}=G_{i} \\
& J \frac{d^{2} \theta}{d t^{2}}+D \frac{d \theta}{d t}+K \theta=G_{i} \tag{1}
\end{align*}
$$

It is assumed that the conted torque is negligibly small and also the air Friction damping is small.
\because the equation of motion educes to

$$
J \frac{d^{2} \theta}{d t^{2}}=G i \longrightarrow(2)
$$

$D \$ K$ are zero.

The emf due to any change of flux linked with search will is

$$
\begin{equation*}
e_{c}=\frac{N d \phi}{d t} \tag{3}
\end{equation*}
$$

At the same time, the movement of the flux meter coil is the field of the magnet. inf is induced in the will

$$
e_{f}=G \frac{d \theta}{d t} \rightarrow(4)
$$

Also thees are voltage dep in the resistance and inductance of the circuit.

$$
\begin{align*}
& e_{c}=e_{f}+\left(L_{f}+L_{c}\right) \frac{d i}{d t}+\left(R_{f}+R_{c}\right) i \longrightarrow \tag{5}\\
& N \frac{d \phi}{d t}=G \frac{d \theta}{d t}+\left[L_{f}+L_{c}\right] \frac{d i}{d t}+\left[R_{f}+R_{c}\right] i \\
& N \frac{d \phi}{d t}-G \frac{d \theta}{d t}-\left[L_{f}+L_{c}\right] \frac{d i}{d t}=\left[R_{f}+R_{c}\right] i \\
& i=\frac{N \frac{d \phi}{d t}-G \frac{d \theta}{d t}-\left[L_{f}+L_{c}\right] \frac{d i}{d t}}{\left[R_{f}+R_{c}\right]} \tag{6}\\
& +d^{2} \theta
\end{align*}
$$

Sub (6) in $\quad J \frac{d^{2} \theta}{d t^{2}}=G i$

$$
\left.J \frac{d^{2} \theta}{d t^{2}}=G \times \frac{N \frac{d \phi}{d t}-G \frac{d \theta}{d t}-\left[L_{f}+L_{c}\right] \frac{d i}{d t}}{\left(R_{f}+R_{c}\right)}\right]
$$

$$
\begin{aligned}
& J \frac{d^{2} \theta}{d t^{2}}=\frac{G}{R_{f}+R_{c}}\left[N \frac{d \phi}{d t}-G \frac{d \theta}{d t}-\left(L_{f}+L_{c}\right] \frac{d i}{d t}\right. \\
& I \frac{d^{2} \theta}{d t^{2}} \times \frac{\left(R_{f}+R_{c}\right)}{G}=N \frac{d \phi}{d t}-G \frac{d \theta}{d t}-\left[L_{f}+L_{c}\right] \frac{d i}{d t} . \\
& \frac{J\left[R_{f}+R_{c}\right]}{G} \frac{d^{2} \theta}{d t^{2}}=N \frac{d \phi}{d t}-G \frac{d \theta}{d t}-\left[L_{f}+L_{c}\right] \frac{d i}{d t .} \\
& \frac{J\left[R_{f}+R_{c}\right]}{G} \frac{d^{2} \theta}{d t^{2}}+G \frac{d \theta}{d t}+\left[L_{f}+L_{c}\right] \frac{d i}{d t}=N \frac{d \phi}{d t} \\
& N \frac{d \phi}{d t}=\frac{J\left(R_{f}+R_{c}\right)}{G} \frac{d^{2} \theta}{d t^{2}}+G \frac{d \theta}{d t}+\left[L_{f}+L_{c}\right] \frac{d i}{d t .}
\end{aligned}
$$

Sub $\frac{d^{2} \theta}{d t^{2}}=\frac{d \omega}{d t}, \because \omega \rightarrow$ angular velocity of moving will at any instants

$$
\frac{N d \phi}{d t}=\frac{J\left[R_{f}+R_{c}\right]}{G} \frac{d \omega}{d t^{\prime}}+G \frac{d \theta}{d t}+\left[L_{f}+L_{c}\right] \frac{d i}{d t}
$$

Now if the time taken by change in flux is T.

$$
\int_{0}^{T} \frac{d d}{d t}=\int_{0}^{T} \frac{J[R \rho+R C}{G} \frac{d^{2} \omega \theta}{d t}+\int_{0}^{T} \cos \frac{d \theta}{d t}+\int_{0}^{T}
$$

limit from 0 to T
$\operatorname{cqu}(7)$

$$
\begin{align*}
& \int_{0}^{T} N \frac{d \phi}{d t} \cdot d t=\int_{0}^{T} \frac{J\left[R_{f}+R_{c}\right]}{G} \frac{d u}{d t} d t+\int_{0}^{T} G \frac{d \theta}{d t} \cdot d t+\int_{0}^{T}\left(L_{f}+L_{c}\right) \frac{d i}{d t} \cdot d t \\
& N d \phi=\frac{J\left[R_{f}+R_{c}\right]}{G} d \omega+G d \theta+\left[L_{f}+L_{c}\right] d i \rightarrow \text { (8) } \tag{8}
\end{align*}
$$

flux $\phi \rightarrow \phi_{1}$ to ϕ_{2}. are the interlinking flux.
$\omega \rightarrow \omega_{1}$ to ω_{2} are the angular velocities
$\theta \rightarrow Q_{1}$ to Q_{2} are deflections
$i \rightarrow$ is to Oi_{2} are cureents

$$
\begin{aligned}
& \int_{\phi_{1}}^{e q u(8)} N d \phi=\int_{\omega_{1}}^{\phi_{2}} \frac{J\left[R_{f}+R_{c}\right]}{G} d \omega+\int_{\omega_{1}}^{\theta_{2}} G d \theta+\int_{i_{1}}^{i_{2}}\left(L_{f}+L_{C}\right) d i \\
& N\left(\phi_{2}-\phi_{1}\right]=\frac{J\left(R_{f}+R_{c}\right)\left[\omega_{2}-\omega_{1}\right]+G\left[\theta_{2}-\theta_{1}\right]+\left(L_{f}+L_{c}\right)\left[i_{2}-1 i\right]}{G}
\end{aligned}
$$

Suffixes $1 \$ 2$ indicate respectively values at the begining and at the end of the fluxes. But. angular velocities and cureent are zero at both the begining and end of the changes.

$$
\text { ie } \omega_{1}=\omega_{2}=0 ; \quad i_{1}=i_{2}=0
$$

Putting in equ (9)

$$
N\left(\phi_{2}-\phi_{1}\right)=G\left(\theta_{2}-\theta_{1}\right)
$$

$\phi \rightarrow$ change in flux.
$\theta \rightarrow$ change in flux meter deflection
$N \phi=G \theta$

$$
\phi=\frac{G}{N} \theta
$$

If the fluxmeter peremanet magnet field is uniform for all positions of moving vil G, is a constant.

Thus change inf the value of flux is direct y Proportional to change in the deflection and hence the insteument will have a uniform scale.

