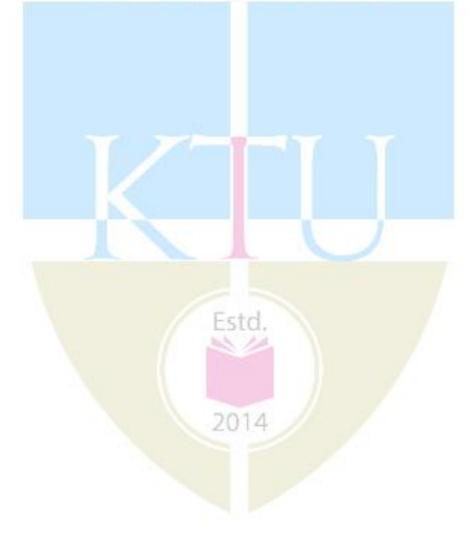
Course N	No.	Course Name	L-T-P - Credit		Year of troduction
MA20	4	Probability distributions, Random Processes and Numerical Methods	3-1-0-4		2016
Prerequis	site: Ni	il			
Course O To and To and chi To fin Syllabus Discrete ra	bjectiv introc alysis a learn d wide ains. under iding ro ndom v rocesses	ves duces the modern theory of probability and processing of random processes and most of the important models of discrete ely used models of random processes stand some basic numerical methods for bots of equations and solutions of ODEs.	signals. e and continuous pr such as Poisson p interpolation and in	robability of processes antegration	distributions and Markov
random They wo are usefu in the co	nd of t phenor ould als il in the ourse	ome. the course students would have become mena using various models of probabi so have learned the concepts of autocorr e analysis of random signals. Some of the would help them to solve a variety o n analytical methods fail or are difficult.	lity distributions and relation and power s e fundamental number	nd random spectral de erical meth	n processes ensity which nods learned
At the errandom They wo are usefue in the co compute Text Boo 1. V. 2. Err Reference 1. Ho Re 2. Off 3. T	nd of t phenor ould als il in the ourse or rs when rs when ok: Sundar win Kr ces: ossein 1 search, iverC.II Veerara	the course students would have become mena using various models of probabi so have learned the concepts of autocorr e analysis of random signals. Some of the would help them to solve a variety o	lity distributions and relation and power se e fundamental number f mathematical pro- leueing theory", PH natics", 10 th edition, Statistics and Rand <u>bilitycourse.com</u>) indomProcesses"Else ress" Third edition-M	nd random spectral de erical methoblems by HI Learning, Wiley, 20 lom Proces vier,2005. c Graw Hil	n processes ensity which hods learned the use of g, 2009 015. sses", Kappa 1.
At the er random They wo are usefu in the co compute Text Boo 1. V. 2. Er Reference 1. Ho Re 2. Off 3. T	nd of t phenor ould als il in the ourse or rs when rs when ok: Sundar win Kr ces: ossein 1 search, iverC.II Veerara	the course students would have become mena using various models of probabilities of have learned the concepts of autocorre e analysis of random signals. Some of the would help them to solve a variety of n analytical methods fail or are difficult. rapandian, "Probability, Statistics and Que reyszig, "Advanced Engineering Mathem Pishro-Nik, "Introduction to Probability, 2014 (Also available online at <u>www.probal</u> pe,FundamentalsofAppliedProbabilityandRa jan "Probability Statistics and Random Proc	lity distributions and relation and power se e fundamental number f mathematical pro- nucleueing theory", PH natics", 10 th edition, Statistics and Rand <u>bilitycourse.com</u>) andomProcesses"Else ress" Third edition-M ey-Cengage Learning	nd random spectral de erical methoblems by HI Learning, Wiley, 20 lom Proces vier,2005. c Graw Hil	n processes ensity which hods learned the use of g, 2009 015. sses", Kappa 1.
At the er random They wo are usefu in the co compute Text Boo 1. V. 2. Er Reference 1. Ho Re 2. Off 3. T	nd of t phenor ould als il in the ourse or rs when rs when ok: Sundar win Kr ces: ossein 1 search, iverC.II Veerara	the course students would have become mena using various models of probabi so have learned the concepts of autocorr e analysis of random signals. Some of the would help them to solve a variety o n analytical methods fail or are difficult. rapandian, "Probability, Statistics and Qu reyszig, "Advanced Engineering Mathem Pishro-Nik, "Introduction to Probability, 2014 (Also available online at <u>www.probal</u> pe,FundamentalsofAppliedProbabilityandRa jan "Probability Statistics and Random Proc I Mathematical and computing –Ward-Chen	lity distributions and relation and power se e fundamental number f mathematical pro- nucleueing theory", PH natics", 10 th edition, Statistics and Rand <u>bilitycourse.com</u>) andomProcesses"Else sess" Third edition-M ey-Cengage Learning	nd random spectral de erical methoblems by HI Learning, Wiley, 20 lom Proces vier,2005. c Graw Hil	n processes ensity which hods learned the use o g, 2009 015. sses", Kappa 1.
At the errandom They wo are usefue in the co- compute Text Boo 1. V. 2. Err Reference 1. Ho Re 2. Off 3. T V 4. Nu	nd of t phenor ould als il in the ourse of rs when ok: Sundar win Kr ossein 1 search, iverC.It Veerara umerica Discr sectio Discr	the course students would have become mena using various models of probabilities of have learned the concepts of autocorre e analysis of random signals. Some of the would help them to solve a variety of n analytical methods fail or are difficult. rapandian, "Probability, Statistics and Quereyszig, "Advanced Engineering Mathem Pishro-Nik, "Introduction to Probability, 2014 (Also available online at <u>www.probal</u> be,FundamentalsofAppliedProbabilityandRa jan "Probability Statistics and Random Proc I Mathematical and computing –Ward-Chen Course Pla Contents rete random variables [Text 1: Relevan ons 2.1, 2.2,2.3, 2.5, 3.3 and 3.4] rete random variables, probability mass f ilative distribution function, expected val	lity distributions and relation and power se e fundamental number f mathematical pro- nuclear pro- statistics and Rand bilitycourse.com) andomProcesses"Else ress" Third edition-M ey-Cengage Learning an nt portions of function,	nd random spectral de erical methoblems by HI Learning, Wiley, 20 lom Proces vier,2005. c Graw Hil g-7 th Edition	n processes ensity which hods learned the use of g, 2009 015. sses", Kapp 1. n Sem. Exam

	Poisson random variable, mean, variance, approximation of	2	
	binomial by Poisson.		
	Distribution fitting-binomial and Poisson.	2	
	Continuous random variables [Text 1: Relevant portions of sections 2.4, 2.5, 3.7, 3.8 and 3.11]	2	
	Continuous random variables, Probability density function, expected value, mean and variance.	2	
II	Uniform random variable-, mean, variance.	2	
11	Exponential random variable-mean, variance, memoryless	2	
	property.	Λ=	
	Normal random variable-Properties of Normal curve mean,	3	
	variance (without proof), Use of Normal tables.		15%
	FIRST INTERNAL EXAMINATION	har	
	Joint distributions [Text 1: Relevant portions of sections		15%
	4.1, 4.2, 4.4 4.7and 4.10]		
	Joint probability distributions- discrete and continuous,	4	
III	marginal distributions, independent random variables.		
	Expectation involving two or more random variables,	3	
	covariance of pairs of random variables.		
	Central limit theorem (without proof).	2	
	Random processes [Text 1: Relevant portions of sections		15%
	5.1, 5.2, 5.3 and 6.2]	2	
	Random processes, types of random processes,	2	
IV	Mean, correlation and covariance functions of random	4	
	processes, Wide Sense Stationary (WSS) process, Properties of autocorrelationand auto covariance functions of WSS		
	processes.		
	Power spectral density and its properties.	2	
	SECOND INTERNAL EXAMINATION		
	Special random processes [Text 1: Relevant portions of		20%
	sections 5.5, 5.5.1, 5.5.2, 5.5.3, 5.5.4) and 5.6]		2070
	Poisson process-properties, probability distribution of inter	4	
T 7	arrival times.		
V	Discrete time Markov chain- Transition probability matrix,	5	
	Chapman Kolmogorov theorem (without proof), computation		
	of probability distribution and higher order transition		
	probabilities, stationary distribution.		
	Numerical Methods [Text 2: Relevant portions of sections		20%
	19.2, 19.3, 19.5 and 21.1]		
	(Derivation of formulae not required in this module)	2	
x 7 x	Finding roots of equations-Newton-Raphson method.	3	
VI	Interpolation-Newton's forward and backward difference	3	
	formula, Lagrange's interpolation method.	2	
	Numerical Integration-trapezoidal rule, Simpson's 1/3rd rule.	3 3	
	Numerical solution of first order ODE-Euler method, Runge- Kutta fourth order (classical method).	3	
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours


The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

	Course Name	L-T-P - Credits	Year of Introduction
EC202	SIGNALS & SYSTEMS	3-1-0 -4	2016
	Prerequisite: N	il	
Course Object	tives		
1. To train st	udents for an intermediate level of flu	ency with signals and	systems in both
	time and discrete time, in preparation for		ts in digital signal
processing,	image processing, communication theory	and control systems.	
	continuous and discrete-time signals		
1	ions and methods those are necessary for	the analysis of continu	uous and discrete-
•	s and systems.	CICAL	
	rize with techniques suitable for analyzin	g and synthesizing bot	h continuous-time
	e time systems.	ITV	
•	nowledge of time-domain representation	• 1	•
	equations, difference equations, impulse		
	equency-domain representation and analy	vis concepts using Four	rier analysis tools,
-	ansform and Z-transform.		
To stud	y concepts of the sampling process, recon	struction of signals and	interpolation.
Syllabus			
	nals, Continuous time and Discrete time		
	uation representation, Difference equati		
•	rete time LTI Systems, Correlation bet		
Fraguancy dor	noin nonnocontation Continuous time		
	nain representation, Continuous time F		
transform, Lap	lace transform, Inverse Laplace transform	n, Unilateral Laplace tr	ansform, Transfer
transform, Lap function, Frequ	lace transform, Inverse Laplace transform lency resp <mark>onse</mark> , Sampling, Alia <mark>si</mark> ng, Z tra	n, Unilateral Laplace tr nsform, Inverse Z trans	ansform, Transfer form, Unilateral Z
transform, Lap function, Frequ transform, Freq	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z tra- luency domain representation of discrete	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t	ansform, Transfer form, Unilateral Z ime Fourier series
transform, Lap function, Frequ transform, Frec and discrete tim	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t	ansform, Transfe form, Unilateral Z ime Fourier series
transform, Lap function, Frequ transform, Freq and discrete tin above transform	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t	ansform, Transfe form, Unilateral Z ime Fourier series
transform, Lap function, Frequ transform, Freq and discrete tin above transform Expected out	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come.	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t	ansform, Transfer form, Unilateral Z ime Fourier series
transform, Lap function, Frequ transform, Frec and discrete tin above transform Expected out The student will	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come.	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI	ansform, Transfer form, Unilateral Z ime Fourier series systems using the
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define,	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z tra- juency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI	ansform, Transfer form, Unilateral Z ime Fourier series systems using the
transform, Lap function, Frequ transform, Frec and discrete tin above transform Expected out The student will i. Define, time sig	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems.	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI properties of continuo	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic mals and systems. ent the CT signals in Fourier series and int	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI properties of continuo	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transform	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI s properties of continuo erpret the properties of	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic mals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlation	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI s properties of continuo erpret the properties of	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals.	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic mals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correla	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a properties of continuo erpret the properties of ation and to describe the	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. Ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlated the the concept of transfer function and deter	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a properties of continuo erpret the properties of ation and to describe the	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z tra- quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlated the concept of transfer function and deter systems.	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a e properties of continuo erpret the properties of ation and to describe the ermine the magnitude ar	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlate e the concept of transfer function and deter systems. sampling theorem and techniques for sampling	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a properties of continuo erpret the properties of ation and to describe the ermine the magnitude ar opling and reconstructio	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on.
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z tra- quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlated the concept of transfer function and deter systems.	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a properties of continuo erpret the properties of ation and to describe the ermine the magnitude ar opling and reconstructio	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on.
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlated e the concept of transfer function and detects systems. sampling theorem and techniques for sam- ine z transforms, inverse z transforms and	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a properties of continuo erpret the properties of ation and to describe the ermine the magnitude ar ppling and reconstruction analyze LTI systems us	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on. sing z transform.
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ Text Book: 1. Alan V	lace transform, Inverse Laplace transform ency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlate e the concept of transfer function and deter systems. sampling theorem and techniques for sampling	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a properties of continuo erpret the properties of ation and to describe the ermine the magnitude ar ppling and reconstruction analyze LTI systems us and Systems, PHI, 2/e, 2	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on. sing z transform.
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ Text Book: 1. Alan V	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlate e the concept of transfer function and deter systems. sampling theorem and techniques for sam ine z transforms, inverse z transforms and 7. Oppenheim and Alan Willsky, Signals a	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a properties of continuo erpret the properties of ation and to describe the ermine the magnitude ar ppling and reconstruction analyze LTI systems us and Systems, PHI, 2/e, 2	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on. sing z transform.
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ Text Book: 1. Alan V 2. Simon	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlate e the concept of transfer function and deter systems. sampling theorem and techniques for sam ine z transforms, inverse z transforms and 7. Oppenheim and Alan Willsky, Signals a	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a e properties of continuo erpret the properties of ation and to describe the ermine the magnitude ar upling and reconstruction analyze LTI systems us and Systems, PHI, 2/e, 2 2/e, 2003	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on. sing z transform.
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ Text Book: 1. Alan V 2. Simon References: 1. Anand J	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z tra- quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic gnals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlate e the concept of transfer function and deter systems. sampling theorem and techniques for sam ine z transforms, inverse z transforms and /. Oppenheim and Alan Willsky, Signals a Haykin, Signals & Systems, John Wiley,	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a c properties of continuo erpret the properties of ation and to describe the ermine the magnitude an upling and reconstruction analyze LTI systems us and Systems, PHI, 2/e, 2 2/e, 2003	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on. <u>sing z transform.</u> 2009
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ Text Book: 1. Alan V 2. Simon References: 1. Anand J 2. B P. La	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z transform quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic mals and systems. ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlate e the concept of transfer function and deter systems. sampling theorem and techniques for sam ine z transforms, inverse z transforms and /. Oppenheim and Alan Willsky, Signals a Haykin, Signals & Systems, John Wiley, Kumar, Signals and Systems, PHI, 3/e, 20	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a c properties of continuo erpret the properties of ation and to describe the ermine the magnitude an upling and reconstruction analyze LTI systems us and Systems, PHI, 2/e, 2 2/e, 2003	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on. <u>sing z transform.</u> 2009
transform, Lap function, Frequ transform, Frequ and discrete tin above transform Expected out The student will i. Define, time sig ii. Represe transfor iii. Outline signals. iv. Illustrat of LTI s v. Explain vi. Determ Text Book: 1. Alan V 2. Simon References: 1. Anand J 2. B P. La 3. Gurung	lace transform, Inverse Laplace transform lency response, Sampling, Aliasing, Z tra- quency domain representation of discrete me Fourier transform (DTFT), Analysis ns come . Il be able to: represent, classify and characterize basic mals and systems. Ent the CT signals in Fourier series and int m and Laplace transform the relation between convolutions, correlate e the concept of transfer function and deter systems. sampling theorem and techniques for sam ine z transforms, inverse z transforms and /. Oppenheim and Alan Willsky, Signals a Haykin, Signals & Systems, John Wiley, Kumar, Signals and Systems, PHI, 3/e, 20 thi, Priciples of Signal Processing & Linear	n, Unilateral Laplace tr nsform, Inverse Z trans time signals, Discrete t of discrete time LTI a e properties of continuo erpret the properties of ation and to describe the ermine the magnitude an upling and reconstruction analyze LTI systems us and Systems, PHI, 2/e, 2 2/e, 2003 13. ar systems, Oxford Univ	ansform, Transfer form, Unilateral Z ime Fourier series systems using the us and discrete Fourier e orthoganality of nd phase response on. <u>sing z transform.</u> 2009

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
	Elementary Signals, Classification and representation of continuous time and discrete time signals, Signal operations	4	
Ι	Continuous time and discrete time systems - Classification, Properties.	3	15%
	Representation of systems: Differential equation representation of continuous time systems. Difference equation representation of discrete systems.	2	
	Continuous time LTI systems and convolution integral.	3	
II	Discrete time LTI systems and linear convolution.	2	15%
11	Stability and causality of LTI systems.	2	1,5 70
	Correlation between signals, Orthoganality of signals.	2	
	FIRST INTERNAL EXAMINATION		
	Frequency domain representation of continuous time signals- continuous time Fourier series and its properties.	4	15%
ш	Convergence, Continuous time fourier transform and its properties.	3	
	Laplace Transform, ROC, Inverse transform, properties, unilateral Laplace transform.	3	
	Relation between Fourier and Laplace transforms.	1	
IV	Analysis of LTI systems using Laplace and Fourier transforms. Concept of transfer function, Frequency response, Magnitude and phase response.	4	15%
	Sampling of continuous time signals, Sampling theorem for lowpass signals, aliasing.	3	
	SECOND INTERNAL EXAMINATION	_	
	Z transform, ROC, Inverse transform, properties, Unilateral Z transform.	4	20%
V	Frequency domain representation of discrete time signals, Discrete time fourier series and its properties.	4	
	Discrete time fourier transform (DTFT) and its properties	4]
VI	Relation between DTFT and Z-Transform, Analysis of discrete time LTI systems using Z transforms and DTFT, Transfer function, Magnitude and phase response.	6	20%

Assignment: Convolution by graphical methods, Solution of differential equations. **Project:** Use of Matlab in finding various transforms: magnitude and phase responses.

Question Paper Pattern

The question paper shall consist of three parts. Part A covers I and II module, Part B covers III and IV module, Part C covers V and VI module. Each part shall have three questions which may have maximum four subdivisions. Among the three questions one will be a compulsory question covering both modules and the remaining from each module, of which one to be answered. Part A & Part B questions shall carry 15 marks each and Part C questions shall carry 20 marks each with maximum 30% for theory and 70% for logical/numerical problems, derivation and proof.

EC204 ANALOG INTEGRATED CIRCUITS 4-0-0-4 2016 Prerequisite: Nil Course Objectives • To equip the students with a sound understanding of fundamental concepts of operation amplifiers • To understand the wide range of applications of operational amplifiers • To introduce special function integrated circuits To introduce the basic concepts and types of data converters Syllabus Differential amplifier configurations, Operational amplifiers, Block diagram, Ideal op-an parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications at types. Expected outcome . The students will i. have a thorough understanding of operational amplifiers for various applications Text Book: 1. 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd editid 2010	Course cod	le Course Name	L-T-P - Credits		ar of luction		
Prerequisite: Nil Course Objectives • To equip the students with a sound understanding of fundamental concepts of operation amplifiers • To understand the wide range of applications of operational amplifiers • To understand the wide range of applications of operational amplifiers • To introduce special function integrated circuits To introduce the basic concepts and types of data converters Syllabus Differential amplifier configurations, Operational amplifiers, Block diagram, Ideal op-an parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications a types. Expected outcome . The students will 1. have a thorough understanding of operational amplifiers for various applications Text Book: 1. France S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers, Kutnerar Ics, Oxford University Press, 2 nd editio 2010	EC204	ANALOG INTEGRATED CIRCUITS					
Course Objectives • To equip the students with a sound understanding of fundamental concepts of operation amplifiers. • To understand the wide range of applications of operational amplifiers. • To understand the wide range of applications of operational amplifiers. • To introduce special function integrated circuits. • To introduce special function integrated circuits. • To introduce the basic concepts and types of data converters Syllabus • Differential amplifier configurations, Operational amplifiers, Block diagram, Ideal op-an parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications at types. Expected outcome . • The students will 1. have a thorough understanding of operational amplifiers for various applications Text Book: • To students will 1. have a thorough understanding of operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S. , V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C. Gayton, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, 4/e, 2010 3. <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>							
amplifiers To understand the wide range of applications of operational amplifiers To introduce special function integrated circuits To introduce the basic concepts and types of data converters Syllabus Differential amplifier configurations, Operational amplifiers, Block diagram, Ideal op-an parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications at types. Expected outcome . The students will i. head ble to design circuits using operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2007 References: 1 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C. Glayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. S., and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, New Age International, 3/e, 2	Course Ob	^					
 To understand the wide range of applications of operational amplifiers To introduce special function integrated circuits To introduce the basic concepts and types of data converters Syllabus Syllabus Differential amplifier configurations, Operational amplifiers, Block diagram, Ideal op-an parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their applications of amp applications-linear and nonlinear, Active filters, Specialized ICs and their applications at types. Expected outcome The students will have a thorough understanding of operational amplifiers for various applications tranco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 Salivahanan S. V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 David A. Bell, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 David A. Bell, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 2010 R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, 7entice Hall, 4/e, 2010 R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, New Age International, 3/e, 2010 Referencial amplifiers: Differential amplifier, Current sources, 6 Module Contents Hours Module Contents Hours Frequency response of differential amplifier			ental conce	epts of op	erational		
To introduce the basic concepts and types of data converters Syllabus Differential amplifier configurations, Operational amplifiers, Block diagram, Ideal op-an parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications artypes. Expected outcome . The students will i. have a thorough understanding of operational amplifiers for various applications Text Book: 1. 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008 References: 1. 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, 4/e, 2010 3. References: 1. Botkar K. R., Integrated Dircuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd edition 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. Ref coughin & Fredrick Driscoll, Operational Amplifiers	• Tou	inderstand the wide range of applications of operational an	nplifiers				
Differential amplifier configurations, Operational amplifiers, Block diagram, Ideal op-an parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications at types. Expected outcome . The students will i. have a thorough understanding of operational amplifiers for various applications. Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2000 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuit 6 th Edition, PHI,2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 Module Contents Hours Sem Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5			AM				
parameters, Effect of finite open loop gain, bandwidth and slew rate on circuit performance, o amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications ar types. Expected outcome . The students will i. have a thorough understanding of operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S, V, S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear Integrated Circuits, Press, 2 nd editio 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuit 6 th Edition, PHL2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2011 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, Mew Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 0. Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5	Syllabus	TECHNOLOGIC	AI				
amp applications-linear and nonlinear, Active filters, Specialized ICs and their application Monolithic Voltage Regulators - types and its applications, Data converters - specifications at types. Expected outcome . The students will i. have a thorough understanding of operational amplifiers ii. be able to design circuits using operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S. V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd editio 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, 4/e, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2012 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2012 Module Contents Hours Kara Marine Contents Hours Sem Examplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier, Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of fin			-				
Monolithic Voltage Regulators - types and its applications, Data converters - specifications at types. Expected outcome . The students will i. have a thorough understanding of operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers & Linear Integrated Circuits, Tessvier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd editic 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, New Age International, 3/e, 2010 6 Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2012 Course Plan Module Operational amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current							
types. Expected outcome . The students will i. have a thorough understanding of operational amplifiers ii. be able to design circuits using operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers & Linear Integrated Circuits, Press, 2 ^{md} editio 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuit 6 th Edition, PHI,2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2011 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, 6/e, Oxford University Press, 2011 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2011 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2011 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2011 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2011 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, New Age International, 3/e, 2010 7. Sedra A. Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 7. Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer cu							
Expected outcome . The students will i. have a thorough understanding of operational amplifiers ii. be able to design circuits using operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S. ,V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd editio 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits of the Edition, PHI,2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2012 Course Plan Module Module Operational amplifiers: Differential amplifier, Configurations using gain, CMRR, Non-ideal characteristics of differential amplifier, Frequency response of differential amplifier, Current sources, Active load, Concept		voltage Regulators - types and its applications, Data co	iiverters - s	specificati	ons and		
The students will i. have a thorough understanding of operational amplifiers iii. be able to design circuits using operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2007 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd editio 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, 6/e, Oxford University Press, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuit		outcome .					
ii. be able to design circuits using operational amplifiers for various applications Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2007 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICS, Oxford University Press, 2 nd editio 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, Oxford University Press, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 Course Plan Module Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits, (Analysis usin	-						
Text Book: 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2007 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd edition 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, 6/e, Oxford University Press, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2011 Course Plan Module Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). <td>i. have</td> <td>a thorough understanding of operational amplifiers</td> <td></td> <td></td> <td></td>	i. have	a thorough understanding of operational amplifiers					
1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd editio 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, New Age International, 3/e, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 Course Plan Module Contents Integrated characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5			ous applica	tions			
McGraw Hill, 2008 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd edition, 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, 4/e, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Micr							
 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 200 References: Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2nd edition 2010 Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, 4/e, 2010 Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 Rodra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 Course Plan Module Contents Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5 			ntegrated C	Circuits, 3/	e, Tata		
References: 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd edition 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, New Age International, 3/e, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 Course Plan Module Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 Isymmeters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth			ita Tata M		:11 2009		
1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010 2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd edition 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, New Age International, 3/e, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013 Course Plan Module Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 15% Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5			ints, Tata M	ICOTAW H	III, 2008		
2. C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd. Elsevier, 1971 3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd edition 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, 4/e, 2010 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2017 8. Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 15% 0perational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5			10				
3. David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2 nd edition 2010 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits 6 th Edition, PHI,2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013 Course Plan Module Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth				d. Elsevie	r. 1971		
 4. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits 6th Edition, PHI,2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013 Course Plan Module Contents Hours Sem Example BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 							
5. R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits 6 th Edition, PHI,2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013 Course Plan Module Contents Hours Sem Exan Mark BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 15% Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5							
6 th Edition, PHI,2001 6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013 Course Plan Module Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 15% Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5							
6. Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013 Course Plan Module Contents Hours Sem Exan Mark Build S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010 Sem Module Course Plan Hours Sem Exan Mark Image: Module Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 15% Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5	.1		& Linear I	ntegrated	Circuits,		
7. Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013 Course Plan Module Contents Hours Sem Exan Mark Module Contents Hours Sem Exan Mark BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 6 15% Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5			Intornatio	$n_{0}1 \frac{2}{2} \frac{2}{2}$	010		
ModuleCourse PlanModuleContentsHoursSem Exam MarkDifferential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only).6Image: Differential amplifiers: Introduction, Block diagram, Ideal op-amp op-amp configurations, Effect of finite open loop gain, Bandwidth5							
ModuleContentsHoursSem Exam MarkIDifferential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only).6Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth5	7. Deul			cisity rics	5, 2015		
IDifferential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only).6MarkIOperational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth55			/		Sem.		
IDifferential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only).6IOperational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth5	Module	Contents		Hours	Exam Morka		
IBJT, Large and small signal operations, Input resistance, Voltage gain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only).615%Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth5	l	Differential amplifiers: Differential amplifier configuration	ons using				
Igain, CMRR, Non-ideal characteristics of differential amplifier. Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only).615%Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth5							
I Frequency response of differential amplifiers, Current sources, Active load, Concept of current mirror circuits, Wilson current mirror circuits (Analysis using hybrid 'pi' model only). 15% Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5			U	6			
Imirror circuits (Analysis using hybrid 'pi' model only).15%Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth5]	Frequency response of differential amplifiers, Current sources,					
Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth			n current		15%		
parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth 5	1				1570		
op-amp configurations, Effect of finite open loop gain, Bandwidth		1 1 0					
				5			
			andwidth				
		L	Feedback	3	15%		

			1
	configurations, Voltage series feedback, Voltage shunt feedback,		
	Properties of practical op-amp.		
	Op-amp applications: Inverting and non inverting amplifier, DC		
	and AC amplifiers, Summing, Scaling and averaging amplifiers,	4	
	Instrumentation amplifier.		
	FIRST INTERNAL EXAMINATION		
	Op-amp applications: Voltage to current converter, Current to		
III	voltage converter, Integrator, Differentiator, Precision rectifiers,	7	15%
	Log and antilog amplifier, Phase shift and Wien bridge oscillators		
	Astable and monostable multivibrators, Triangular and saw tooth		
	wave generators, Comparators, Zero crossing detector, Schmitt	5	
TT 7	trigger		1.50/
IV	Active filters: Advantages, First and second order low pass, High	-	15%
	pass, Band pass and band reject filters, Design of filters using	5	
	Butterworth approximations		
	SECOND INTERNAL EXAMINATION		1
	Specialized ICs and its applications:		20%
	Timer IC 555 : Astable and monostable operations, applications.	2	
	Analog Multipliers: Introduction, Gilbert multiplier cell.	3	
	Voltage Controlled Oscillator IC AD633 and their applications.		
	Phase Locked Loop – Operation, Closed loop analysis, Lock and		
	capture range, Basic building blocks, PLL IC 565, Applications of		
\mathbf{V}	PLL for AM & FM detection and Frequency multiplication,	4	
	Frequency division, Frequency synthesizing.		
	Monolithic Voltage Regulators - Fixed voltage regulators, 78XX		
	and 79XX series, Adjustable voltage regulators, IC 723 – Low		
	voltage and high voltage configurations, Current boosting, Current	4	
	limiting, Short circuit and Fold-back protection.		
	Data Converters: D/A converter, Specifications, Weighted resistor	2	20%
	type, R-2R Ladder type.	3	
VI	A/D Converters: Specifications, Classification, Flash type,		1
	Counter ramp type, Successive approximation type, Single slope	5	
	type, Dual slope type, Sample-and-hold circuits.		
	END SEMESTER EXAM		1

Assignment

- 1. Explain the importance of frequency compensated networks in opamps and the commonly used compensation techniques.
- 2. Write short notes on commercially available integrated circuits (Opamp, ADC, DAC, VCO, Analog multiplier, PLL) with pin outs and their important features

Question Paper Pattern

The question paper shall consist of three parts. Part A covers I and II module, Part B covers III and IV module, Part C covers V and VI module. Each part has three questions, which may have maximum four subdivisions. Among the three questions, one will be a compulsory question covering both modules and the remaining from each module, of which, one to be answered. Part A & Part B questions shall carry 15 marks each and Part C questions shall carry 20 marks each with maximum 60% for theory and 40% for logical/numerical problems, derivation and proof.

Course code		L-T-P - Credits		ar of luction
EC206		3-0-0-3		16
	isite: EC207 Logic Circuit Design	3-0-0-3	20	10
Course O				
	0			
	impart knowledge in computer architecture. impart knowledge in machine language programming.			
	develop understanding on I/O accessing techniques and mer	nory struct	tures.	
Syllabus	APLARDU KAD	4 M		
	l units of a computer, Arithmetic circuits, Processor are			
	g modes, Execution of program, Micro architecture design p			
	ol units, I/O accessing techniques, Memory concepts, Me	mory inte	rface, Ca	iche and
	emory concepts.			
-	l outcome .			
	nts will be able to:			
	derstand the functional units of a computer			
	entify the different types of instructions			
	derstand the various addressing modes			
	derstand the I/O addressing system			
	tegorize the different types of memories			
Text Boo			d Desian	Esseth
	avid A. Patterson and John L. Hennessey, Computer Organ	isation an	d Design	i, Fourth
	dition, Morgan Kaufmann	d Compu	tor Arab	itaatura N
	avid Money Harris, Sarah L Harris, Digital Design an aufmann – Elsevier, 2009	u Compu	ter Arch	necture, w
Reference				
	rl Hamacher : "Computer Organization ", Fifth Edition, Mc	Graw Hill		
	in P Hayes: "Computer Architecture and Organisation", Mc			
	illiam Stallings: "Computer Organisation and Architecture",		ducation	
	drew S Tanenbaum: "Structured Computer Organisation", P			
	aig Zacker: "PC Hardware : The Complete Reference", TMF			
	Course Plan			
Module	Contents		Hours	Sem. Exam
mouule			liouis	Marks
	Functional units of a computer			
	Arithmetic Circuits: Adder-carry propagate adder, Rippl	e carry	4	
	adder, Basics of carry look ahead and prefix adder, Sub	otractor,	4	
Ι	Comparator, ALU			15%
	Shifters and rotators, Multiplication, Division		3	
	Number System: Review of Fixed point & Floating point	number	1	
	system		T	
	Architecture : Assembly Language, Instructions, Op	perands,	2	
II	Registers, Register set, Memory, Constants		2	15%
11		uctions,	3	1.570
	Interpreting machine language code		5	
	FIRST INTERNAL EXAMINATION			
III	MIPS Addressing modes - Register only, Immediate, Ba	se, PC-	3	15%

	MIPS memory map, Steps for executing a program - Compilation,	3	
	Assembling, Linking, Loading	5	-
	Pseudoinstuctions, Exceptions, Signed and Unsigned instructions, Floating point instructions	3	
	MIPS Microarchitectures – State elements of MIPS processor	1	
IV	Design process and performance analysis of Single cycle processor, Single cycle data path, Single cycle control for R – type arithmetic/logical instructions.	3	15%
11	Design process and performance analysis of multi cycle processor, Multi cycle data path, Multi cycle control for R – type arithmetic/logical instructions.	3	1370
	SECOND INTERNAL EXAMINATION		
X 7	I/O system – Accessing I/O devices, Modes of data transfer, Programmed I/O, Interrupt driven I/O, Direct Memory Access, Standard I/O interfaces – Serial port, Parallel port, PCI, SCSI, and USB.	3	20%
V	Memory system – Hierarchy, Characteristics and Performance analysis, Semiconductor memories (RAM, ROM, EPROM), Memory Cells – SRAM and DRAM, internal organization of a memory chip, Organization of a memory unit.	4	
VI	Cache Memory – Concept/principle of cache memory, Cache size, mapping methods – direct, associated, set associated, Replacement algorithms, Write policy- Write through, Write back.	3	20%
	Virtual Memory – Memory management, Segmentation, Paging, Address translation, Page table, Translation look aside buffer.	3	
	END SEMESTER EXAM		

Question Paper Pattern

The question paper shall consist of three parts. Part A covers I and II module, Part B covers III and IV module, Part C covers V and VI module. Each part has three questions, which may have maximum four subdivisions. Among the three questions, one will be a compulsory question covering both modules and the remaining from each module, of which one to be answered. Part A & Part B questions shall carry 15 marks each and Part C questions shall carry 20 marks each with maximum 80 % for theory and 20% for logical/numerical problems, derivation and proof.

2014

Course code		-T-P - redits		r of luction
EC208		0-0-3		16
	isite: EC205 Electronic Circuits			
Course O				
• To	study the concepts and types of modulation schemes.			
	study different types of radio transmitters and receivers.			
	study the effects of noise in analog communication systems. impart basic knowledge on public telephone systems.	NA.		
Syllabus	AT JADUOL NAL	1141		
Amplitude modulatio Frequency	of communication system, Need for modulation, Noises, e modulator circuits, Demodulator circuits, AM transmitter n: principles of frequency modulation, phase modulation, modulator circuits, FM transmitters, FM receiver, Noise ephone systems, standard telephone set, cordless telephones.	rs, Type AM an	s of AM d FM R	l, Angle eceivers,
Expected	d outcome .			
The studen	nts will be able to:			
	derstand the different analog modulation schemes.			
	derstand the fundamental ideas of noises and its effect in comm		on system	s.
	plain the principle and working of analog transmitters and rece	ivers.		
iv. kn Text Bo	ow the basic idea of telephone systems.			
	Dennis Roody and John Coolen, Electronic Communication, Po	arson /	/@ 2011	
	eorge Kennedy, Electronic Communication Systems, McGraw			
	omasi, Electronic Communications System, Pearson, 5/e, 2011		2, 2000.	
Referen				
1. Bl	ake, Electronic Communication system, Cengage, 2/e, 2012.			
	non Haykin, Communication Systems, Wiley 4/e, 2006.			
	ub, Schilling, Saha, Principles of communication system, McC			
4. To	masi, Advanced Electronic Communications Systems, Pearson	n, 6/e, 20)12.	
	Course Plan			C
Module	Contents		Hours	Sem. Exam Marks
	Introduction, Elements of communication systems, Nee modulation	d for	2	
I	Noise in communication system, Thermal noise (white r	noise)		15%
-	Shot noise, Partition noise, Flicker noise, Burst noise, Sig		3	1070
	noise ratio, Noise factor, Noise temperature, Narrow band no		-	
	Amplitude modulation: Sinusoidal AM, Modulation			
	Average power, Effective voltage and current, Nonsinu		4	
II	modulation.			15%
	Amplitude modulator circuits, Amplitude demodulator ci	rcuits,	5	
	AM transmitters, Noise in AM Systems.		5	
	FIRST INTERNAL EXAMINATION			
ш	Single Sideband Modulation: Principles, Balanced modu Singly & doubly balanced modulators, SSB generation, method, Phasing method & Third method, SSB rece Modified SSB systems, Pilot carrier SSB & ISB, Companded	Filter ption,	6	15%

137	Angle modulation: Frequency modulation, Sinusoidal FM, Frequency spectrum, Modulation index, Average power, Non- sinusoidal modulation, Deviation ratio, Comparison of AM and FM.	4	150/
IV	AM & FM Receivers: Super heterodyne receiver, Tuning range, Tracking, Sensitivity and gain, Image rejection, Double conversion, Adjacent channel selectivity, Automatic Gain Control (AGC).	4	15%
	SECOND INTERNAL EXAMINATION	-	
	Phase modulation, Equivalence between PM and FM, Sinusoidal phase modulation, Digital phase modulation.	3	20%
V	Angle modulator Circuits: Varactor diode modulators, Transistor modulators. FM Transmitters: Direct and Indirect Methods.	3	
VI	Angle modulation detectors, Slope detector, Balanced slope detector, Foster-Seeley discriminator, PLL demodulator, Automatic Frequency Control (AFC), Amplitude limiters, Noise in FM systems, Pre-emphasis and De-emphasis.	4	20%
	Telephone systems, standard telephone set, basic call procedures and tones, DTMF, cordless telephones.	4	
	END SEMESTER EXAM		

Assignment

Study of

- 1. The telephone circuit Local subscriber loop, Private-line circuits, Voice-frequency circuit arrangements.
- 2. The public telephone network Instruments, Local loops, Trunk circuits and exchanges, Local central exchanges, Automated central office switches and exchanges.

Question Paper

The question paper shall consist of three parts. Part A covers I and II module, Part B covers III and IV module, Part C covers V and VI module. Each part has three questions, which may have maximum four subdivisions. Among the three questions, one will be a compulsory question covering both modules and the remaining from each module, of which one to be answered. Part A & Part B questions shall carry 15 marks each and Part C questions shall carry 20 marks each with maximum 60 % for theory and 40% for logical/numerical problems, derivation and proof.

Course code	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016
Prerequisite :	Nil		

Course Objectives

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Communication Skill: Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats, Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome

The students will be able to

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

Resource Book:

Life Skills for Engineers, Complied by ICT Academy of Kerala, McGraw Hill Education (India) Private Ltd., 2016

References:

- Barun K. Mitra; (2011), "Personality Development & Soft Skills", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

	Course Plan			
Module	Contents	Hou L-T L		Sem. Exam Marks
Ι	 Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures, Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills. Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports. Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software. 	2	2	See evaluation scheme

II	 Need for Creativity in the 21st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence. Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections. Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application 	2	2
	problems. Introduction to Groups and Teams, Team Composition,		
Ш	 Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations. Group Problem Solving, Achieving Group Consensus. Group Dynamics techniques, Group vs Team, Team Dynamics, Teams for enhancing productivity, Building & Managing Successful Virtual Teams. Managing Team Performance & Managing Conflict in Teams. Working Together in Teams, Team Decision-Making, Team 	3	2
	Working Together in Teams, Team Decision-Waking, TeamCulture & Power, Team Leader Development.Morals, Values and Ethics, Integrity, Work Ethic, Service	3	
IV	 Learning, Civic Virtue, Respect for Others, Living Peacefully. Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character Spirituality, Senses of 'Engineering Ethics', variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about right action, Self-interest, customs and religion, application of ethical theories. Engineering as experimentation, engineers as responsible 	3	2
	experimenters, Codes of ethics, Balanced outlook on. The challenger case study, Multinational corporations, Environmental ethics, computer ethics,	3	2

	Leadership Styles, VUCA Leadership, DART Leadership, Transactional vs Transformational Leaders, Leadership Grid,		2	
	Implications of national culture and multicultural leadership Types of Leadership, Leadership Traits.	2		
V	Growing as a leader, turnaround leadership, gaining control, trust, managing diverse stakeholders, crisis management	L	2	
	Introduction, a framework for considering leadership, entrepreneurial and moral leadership, vision, people selection and development, cultural dimensions of leadership, style, followers, crises.	4		
	Weapons development, engineers as managers, consulting engineers, engineers as expert witnesses and advisors, moral leadership, sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers(India), Indian Institute of Materials Management, Institution of electronics and telecommunication engineers(IETE), India, etc.	3		

EVALUATION SCHEME

Internal Evaluation

(Conducted by the College)

Total Marks: 100

Part – A

(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

1. Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills	2	10 marks
(ii)	Subject Clarity	-	10 marks
(iii)	Group Dynamics	-	10 marks
(iv)	Behaviors & Mannerisms	-	10 marks

(Marks: 40)

Part – B

(To be started from 31^{st} working day and to be completed before 60^{th} working day of the semester)

2. Presentation Skills – Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;

10 marks

10 marks

10 marks

- (i) Communication Skills*
- (ii) Platform Skills**
- (iii) Subject Clarity/Knowledge

(Marks: 30)

* Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

** Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

Part – C

(To be conducted before the termination of semester)

3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;

(i)	Usage of English & Grammar	-	10 marks
(ii)	Following the format		10 marks
(iii)	Content clarity	-	10 marks

(*Marks: 30*)

External Evaluation (Conducted by the University)

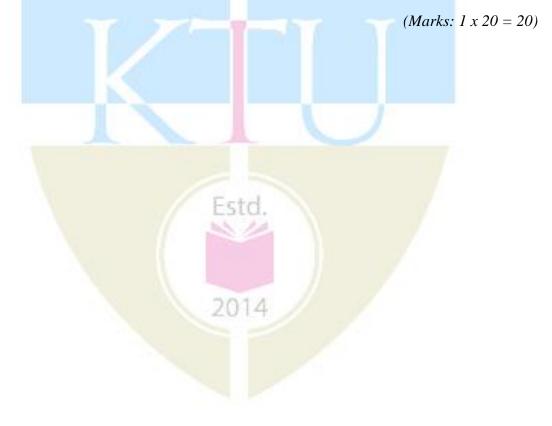
Total Marks: 50

Time: 2 hrs.

Part – A

Short Answer questions

There will be one question from each area (five questions in total). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;


- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

Part – B

Case Study

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion
- (ix) Answer the question at the end of the case

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
EC232	ANALOG INTEGRATED	0-0-3-1	2016
	CIRCUITS LAB		
Prerequisite	Should have registered for EC204 Ana	log Integrated Cir	cuits
Course obje	ctives:	IZ A T	A A A
• To ac	quire skills in designing and testing anal	og integrated circu	uits
• To ex	pose the students to a variety of practica	l circuits using va	rious analog ICs.
	TECHNOL		AL
List of Expe	riments: (Minimum 12 experiments ar	e to be done)	/
	UNIVER	SILI	
1. Famil	iarization of Operational amplifiers -	Inverting and I	Non inverting amplifiers
-	ency response, Adder, Integrator, compa	rators.	
2. Meas	urement of Op-Amp parameters.		
	rence Amplifier and Instrumentation amp	olifier.	
	itt trigger circuit using Op –Amps.		
	l <mark>e</mark> and Monostable multivibrator using C) p -Amps.	
	r IC NE555		
	gular and square wave generators using (
	bridge oscillator using Op-Amp - without	ut & with amplitu	de stabilization.
	hase shift Oscillator.		
	sion rectifiers using Op-Amp.		
	e second order filters using Op-Amp (LF		BSF).
	filters to eliminate the 50Hz power line	frequency.	
	ltage regulators.		
	converters- counter ramp and flash type.		
	Converters- ladder circuit.		
	of PLL IC: free running frequency lock	range capture ran	ge
Expected ou			
	should able to:		
-	n and demonstrate functioning of variou		C 1
2. Stude	nts will be able to analyze and design va	rious applications	of analog circuits.

-/

COURSE	COURSE NAME	L-T-P-	YEAR OF
CODE	LOCIC CIDCUIT DESIGN LAD	C 0-0-3-1	INTRODUCTION 2016
EC230	LOGIC CIRCUIT DESIGN LAB	0-0-3-1	2016
	EC207 Logic circuit design		
Course object			
	ly the working of standard digital ICs and	basic buildin	g blocks
	ign and implement combinational circuits		A 5 4
	ign and implement sequential circuits	KAI	$\Delta \Lambda \Lambda$
List of Experi	ments: -(Minimum 12 experiments are	to be done)	TAIVI
	TECHNOLO	10.10	Δ
	ation of functions using basic and universa		
2. Design	and Realization of half /full adder and su	btractor using	g basic gates and universal
gates.	UNIVER	011	
3. 4 bit ad	lder/subtractor and BCD adder using 7483	3.	
4. 2/3 bit	binary comparator.		
5. Binary	to Gray and Gray to Binary converters.		
6. Study of	of Flip Flops: S-R, D, T, JK and Master S	lave JK FF u	sing NAND gates
7. Asynch	ronous Counter: Realization of 4-bit cour	nter	
8. Asynch	ronous Counter: Realization of Mod-N co	ounters.	
9. Asynch	ronous Counter:3 bit up/down counter		
10. Synchr	onous Counter: Realization of 4-bit up/do	wn counter.	
11. Synchr	onous Counter: Realization of Mod-N cou	unters.	
12. Synchr	onous Counter:3 bit up/down cou <mark>nt</mark> er		
13. Shift R	egister: Study of shift right, SIPO, SISO,	PIPO, PISO ((using FF & 7495)
14. Ring co	ounter and Johnson Counter. (using FF &	7495)	
15. Realiza	ntion of counters using IC's (7490, 7492, 7	7493).	
16. Multip	lexers and De-multiplexers using gates an	nd ICs. (7415	0, 74154),
17. Realiza	ation of combinational circuits using MUX	K & DEMUX	
18. Randor	n sequence generator.		
19. LED D	isplay: Use of BCD to 7 Segment decode	r / dr <mark>iver chip</mark>	to drive LED display
20. Static a	and Dynamic Characteristic of NAND gat	e (M <mark>OS/TTL</mark>)
Expected outo	come:	1	
The student sh	ould able to:	18. 9	
1. Design	and demonstrate functioning of various c	ombination c	ircuits
2. Design	and demonstrate functioning of various s	equential circ	cuits
2 E	on offectively as an individual and in a tag		1.1.41

3. Function effectively as an individual and in a team to accomplish the given task